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A B S T R A C T

Fish feeding intensity recognition (FFIR) is crucial for sustainable aquaculture management and production 
optimization. Acoustic-based methods offer non-invasive, cost-effective monitoring in turbid water conditions 
where visual systems fail. However, acoustic signals struggle to capture temporal behavioral dynamics (such as 
fish movement patterns) and spatial motion patterns (such as fish aggregation and swimming trajectories) easily 
detected by visual systems, limiting their discriminative capability for behavioral analysis. This limitation results 
in a significant performance gap between the best acoustic methods and visual approaches. To address these 
challenges, we propose AquaDistill, a novel cross-modal knowledge distillation framework that enhances audio- 
only systems by transferring knowledge from visual modalities during training while requiring only acoustic 
input during inference. AquaDistill incorporates a decomposed distillation strategy that separates audio features 
into static acoustic and dynamic behavioral branches, with hybrid distillation losses enabling effective motion 
knowledge transfer while avoiding feature entanglement. In addition, we introduce the cross-modal behavioral 
fusion (CMBF) mechanism that leverages distillation-guided knowledge to preserve temporal locality crucial for 
behavioral analysis through adaptive feature enhancement and cross-branch information exchange. Unlike 
conventional distillation methods that directly inject cross-modal knowledge, our framework maintains feature 
separation throughout the learning process while enabling intelligent fusion of complementary acoustic repre
sentations. Experimental results demonstrate that AquaDistill significantly improves audio-only model perfor
mance, achieving 89 % mean average precision (mAP) and 87 % accuracy, representing improvements of 7 % 
and 5 % respectively compared to baseline approaches, while maintaining exceptional computational efficiency 
with only 5.9 M parameters and 1.4 ms inference time. This effectively bridging the performance gap between 
acoustic and visual methods while maintaining the deployment advantages of audio-only systems. Our enhanced 
acoustic-based approach demonstrates significant potential for practical aquaculture monitoring applications.

1. Introduction

Fish feeding intensity recognition (FFIR) plays a pivotal role in 
aquaculture management, directly impacting production efficiency, 
feed optimization, and sustainable farming practices (Li et al., 2020; 
Zhao et al., 2024). Global aquaculture production has reached unprec
edented levels, with worldwide output exceeding 82 million tons in 
2023, making it one of the fastest-growing food production sectors 
(Siddik et al., 2024; Roberts et al., 2024). In practical fish farming op
erations, feed costs represent one of the largest expenses, often ac
counting for more than 50 % of total production costs (Cui et al., 2022). 

Accurate monitoring of feeding behaviors enables farmers to optimize 
feeding schedules, reduce waste, and improve fish welfare, ultimately 
contributing to enhanced productivity and environmental sustainability 
(Wang et al., 2024; Zhang et al., 2023).

The development of automated FFIR has been dominated by visual 
monitoring approaches, which have demonstrated remarkable progress 
over the past decade (Cui et al., 2025). Computer vision technology has 
emerged as a popular method to evaluate fish feeding intensity, 
leveraging the distinct visual features that fish exhibit during different 
feeding states. Early researchers employed background subtraction and 
optical flow techniques to extract target features for feeding index 
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determination (Zhao et al., 2017, Zhou et al., 2018). Although these 
methods could capture temporal feeding behaviors, they suffered from 
high computational load due to the use of complex foreground seg
mentation processes and performance degradation due to environ
mental interference such as water surface fluctuations and reflective 
areas (Zhou et al., 2017). Deep learning has revolutionized fish feeding 
analysis, with enhanced MobileNetV3 networks achieving 96.4 % ac
curacy and transformer-based methods like DCA-MVIT reaching 96.62 
% precision (Feng et al., 2022; Zhang et al., 2023; Hu et al., 2025). 
Despite these achievements, vision-based approaches face fundamental 
limitations caused by water quality, lighting conditions, and surface 
reflection that restrict their widespread adoption in commercial aqua
culture operations (Du et al., 2023).

Compared with vision-based methods, acoustic-based monitoring 
methods have emerged as an alternative solution since acoustics are 
unaffected by water turbidity, lighting conditions, or surface reflections 
that commonly degrade visual monitoring systems (Cui et al., 2024; Du 
et al., 2024). Additionally, acoustic signals are more compact than video 
data, requiring less storage and computational resources, making them 
particularly suitable for resource-constrained aquaculture monitoring 
devices (Gao et al., 2020; Lin et al., 2022). Recent agricultural AI de
velopments have emphasized lightweight models for edge deployment 
(Lv et al., 2024), with knowledge distillation techniques enabling 
complex models to be transferred to resource limited devices (Espejo- 
Garcia et al., 2025; Li et al., 2025). However, existing distillation ap
proaches focus on single-modality compression rather than cross-modal 
enhancement (Sai et al., 2025). Deep learning approaches using mel 
spectrograms have emerged as particularly effective representations for 
fish feeding sounds (Cui et al., 2022), as they capture the time
–frequency characteristics of feeding activities while providing robust
ness to certain types of noise. Building upon this foundation, Du et al. 
(2023) introduced GhostNet, a lightweight architecture specifically 
tailored for acoustic FFIR that reduces computational requirements 
while maintaining high accuracy. Similarly, Iqbal et al. (2024) proposed 
an approach combining convolutional neural networks with self- 
attention mechanisms for Oplegnathus punctatus feeding intensity clas
sification, achieving state-of-the-art performance on mel spectrograms. 
However, despite these compelling advantages, acoustic-based fish 
monitoring systems face a fundamental performance limitation: they 
cannot achieve the recognition accuracy levels demonstrated by 
advanced vision-based approaches (Cui et al., 2025). This disparity 
primarily stems from the limitations of single-modality audio signals, 
which lack the rich “physical and motion features”, limiting their 
discriminative capability for fine-grained behavioral analysis (Cui et al., 
2024; Li et al., 2024).

Recent advances in cross-modal knowledge distillation have 
demonstrated significant potential in bridging performance gaps be
tween different modalities across various domains (Huo et al., 2024). 
Cross-modal knowledge distillation extends traditional distillation to 
multimodal learning, where a pretrained network from one modality 
provides supervision to a student network from another modality (Wang 
et al., 2023). Contemporary methods range from traditional response- 
based and feature-based approaches to advanced paradigms including 
self-distillation and adversarial strategies (Mansourian et al., 2025; 
Wang et al., 2025). Successful applications span medical imaging, 
computer vision, and continuous sign language recognition, where 
hybrid distillation losses enable effective motion knowledge transfer 
while avoiding feature entanglement (Gao et al., 2024; Moslemi et al., 
2024; Kwak et al., 2025). However, existing cross-modal knowledge 
distillation methods typically employ direct feature alignment or unified 
representation learning, often suffering from feature entanglement 
when bridging significantly different modalities like audio and video. 
Traditional approaches force the student network to simultaneously 
learn both modality-specific characteristics and cross-modal knowledge, 
leading to conflicting optimization objectives and suboptimal perfor
mance. Moreover, the success of cross-modal distillation depends 

heavily on modality relationships, highlighting the need for domain- 
specific approaches (Hu et al., 2023). Despite these advances, cross- 
modal knowledge distillation remains largely unexplored in underwa
ter acoustic monitoring.

To address these challenges, we propose AquaDistill, a novel cross- 
modal knowledge distillation framework that bridges the acoustic- 
visual performance gap through three key innovations: (1) decom
posed distillation that separates static acoustic and dynamic behavioral 
learning, (2) cross-modal behavioral fusion for temporal locality pres
ervation, and (3) efficient knowledge transfer while maintaining audio- 
only deployment advantages. Our contributions are summarized as 
follows: 

(1) We identify and formalize the fundamental challenge of acoustic- 
visual performance disparity in aquaculture monitoring, 
providing the first systematic analysis of cross-modal knowledge 
transfer requirements in underwater behavioral recognition.

(2) We design a dual-branch framework that explicitly separates 
static acoustic and dynamic behavioral feature learning, with 
specialized hybrid distillation losses that prevent information 
interference while maximizing knowledge transfer effectiveness.

(3) We develop cross-modal behavioral fusion (CMBF) that leverages 
distillation-guided knowledge to preserve temporal locality 
crucial for behavioral analysis through adaptive cross-branch 
enhancement and intelligent fusion weighting, avoiding the 
limitations of traditional fusion approaches.

(4) We demonstrate significant performance improvements (89 % 
mAP and 87 % accuracy, representing 7 % and 5 % improvements 
over baselines) with robust cross-species generalizability from 
Oplegnathus punctatus to Lotus carp. Extensive experimental 
analysis across different architectures establishes guidelines for 
practical aquaculture deployment across diverse species and 
environmental conditions.

This paper is structured as follows. Section 2 introduces the proposed 
AquaDistill framework and its key components. Section 3 introduces the 
dataset and data preprocessing. Section 4 describes the experimental 
setup and implementation details. Section 5 presents the results and 
provides a comprehensive discussion. Section 6 concludes the study and 
offers perspectives for future research.

2. Methods

2.1. Problem Formulation

Let us denote the input video as Xv ∈ RT v×H×W×3 and the corre
sponding audio signal converted to mel spectrogram as Xa ∈ RT a×F, 
where T v and T a represent the temporal dimensions for video and 
audio respectively, H and W are the spatial dimensions of video frames, 
3 represents the number of RGB channels and F is the mel-frequency 
dimension. During training, we have access to both modalities with 
corresponding feeding intensity labels y ∈ {0,1,2, 3} representing 
None, Strong, Medium, and Weak feeding intensities respectively. 
However, during inference, we aim to perform fish feeding intensity 
recognition using only acoustic input Xa.

The objective is to train an acoustic-only student model that can 
achieve performance comparable to a vision-based teacher model. 
Traditional cross-modal distillation directly transfers knowledge from 
the teacher to the student model, often leading to feature entanglement 
and suboptimal performance due to the significant modality gap be
tween visual and acoustic representations.

2.2. Framework overview

To address the limitations of conventional cross-modal distillation, 
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we propose AquaDistill, a decomposed knowledge distillation frame
work that enhances audio-only systems through knowledge transfer 
from video. As illustrated in Fig. 1, our approach consists of three key 
components: (1) a decomposed distillation strategy that separates audio 
features into complementary static acoustic and dynamic behavioral 
branches, (2) the CMBF mechanism for effective cross-branch feature 
integration, and (3) hybrid distillation losses that enable systematic 
knowledge transfer while preserving modality-specific information and 
preventing feature entanglement.

The overall architecture operates in two distinct phases: during 
training, both log-mel spectrograms and video modalities are utilized to 
learn decomposed representations through teacher-guided cross-modal 
knowledge transfer, where the visual teacher network provides rich 
spatiotemporal supervision to enhance the acoustic student branches; 
during inference, only the acoustic input is required as the trained model 
predicts feeding intensity based on the internalized cross-modal 
knowledge. This asymmetric training-inference paradigm enables 
practical deployment advantages of audio-only systems while 
leveraging the rich supervisory signals from visual modalities during the 
learning process, effectively bridging the performance gap between 
acoustic and visual approaches.

2.3. Teacher network training

To provide rich supervisory signals for cross-modal knowledge 
distillation, we employ a pre-trained S3D (Separable 3D CNN) (Xie et al., 
2018) model as our visual teacher network. S3D is a variant of 3D CNNs 

that factorizes standard 3D convolutions into separate spatial and tem
poral convolutions, significantly reducing computational complexity 
while maintaining strong performance in video understanding tasks. 
This architecture effectively captures spatiotemporal patterns in video 
data, making it particularly suitable for understanding dynamic fish 
feeding behaviors. We selected S3D as our teacher model for several 
compelling reasons: first, it demonstrates excellent performance in video 
classification tasks while maintaining a relatively small parameter 
footprint compared to other 3D CNN architectures; second, Cui et al. 
(2024) and Cui et al. (2025) have demonstrated in two recent studies 
that S3D achieves accuracy exceeding 90 % in fish feeding intensity 
classification tasks, establishing its effectiveness in aquaculture video 
analysis. We fine-tune a pretrained S3D model from Kinetics-400 on our 
fish feeding video dataset with four intensity categories (as discussed in 
Section 4.2.1). The fine-tuned visual teacher model then distills spatio
temporal knowledge to the acoustic student network.

2.4. Decomposed cross-modal distillation

Given the audio features ha ∈ RD extracted by the MobileNetV2 
(Kong et al., 2020) backbone from mel spectrograms, our decomposed 
distillation strategy separates these features into two complementary 
branches to avoid feature entanglement during cross-modal knowledge 
transfer. The core idea is to explicitly separate the learning of stable 
acoustic patterns from dynamic behavioral patterns, enabling more 
effective cross-modal knowledge transfer. The representation ha is pro
jected into two different feature spaces through separate projection 

Fig. 1. Overall workflow of the proposed AquaDistill framework. (a) During training, our model performs decomposed cross-modal distillation by explicitly 
separating mel spectrogram inputs into static acoustic (green) and dynamic behavioral branches (orange), with each branch learning complementary representations 
under visual teacher guidance through hybrid distillation losses, followed by CMBF for integrated prediction. (b) At inference, our model requires only mel spec
trogram input and accurately predicts fish feeding intensity through the learned cross-modal knowledge embedded in the dual-branch architecture and 
CMBF mechanism.
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networks, as shown in Equation (1) and Equation (2): 

f static = ϕstatic(ha) ∈ RD (1) 

fdynamic = ϕdynamic(ha) ∈ RD (2) 

where ϕstatic(⋅) and ϕdynamic(⋅) are implemented as identical two-layer 
linear networks with ReLU activations followed by L2 normalization 
for regularization. These projection layers serve as domain adaptation 
components that transform the shared acoustic features into modality- 
specific representations suitable for different learning objectives.

The static acoustic branch is designed to learn stable spectral pat
terns and frequency characteristics that are inherent to acoustic feeding 
signals, such as consistent frequency signatures of feeding sounds and 
background aquaculture environment noise patterns. This branch 
operates independently from the visual teacher to preserve audio- 
specific information that might be lost during cross-modal transfer. 
The static features f static ∈ RD capture the intrinsic acoustic properties 
that are consistent across different feeding intensities but vary in their 
spectral characteristics.

The static features are processed through a linear classification layer 
to produce predictions as follows: 

p̂static
= Linearcls

(
f static

)
(3) 

The static branch is trained using standard cross-entropy loss with 
ground truth labels: 

L static = l CE
(
p̂static

, y
)

(4) 

where y is the one-hot encoded ground truth label.
The dynamic behavioral branch learns temporal dynamics and mo

tion patterns by distilling knowledge from the pre-trained visual teacher 
model. Unlike the static branch, this branch focuses on capturing tem
poral evolution and intensity variations in feeding behaviors that are 
more readily observable in visual data. To address the significant mo
dality gap between acoustic and visual representations, we employ 
specialized normalization and similarity-based distillation losses. The 
visual teacher features hv ∈ RT×D are first temporally averaged to obtain 
global representations and then L2 normalized to ensure consistent 
feature scales, denoted as zv

global.
To handle the distribution differences between modalities, we use 

the cosine similarity loss instead of the L2 distance-based loss, which is 
more robust to scale variations and modality gaps, as shown below: 

L feature = 1 − CosineSimilarity
(

fdynamic, zv
global

)
(5) 

Where fdynamic is the L2 normalized dynamic features.
The dynamic features are processed through the same linear classi

fication layer to produce predictions: 

p̂dynamic
= Linearcls

(
fdynamic

)
(6) 

Rather than using traditional knowledge distillation (KD) with soft 
targets, we employ the teacher’s predictions as pseudo ground truth 
labels, which provides more direct supervision for bridging the modality 
gap as follows: 

y pseudo = argmax
(
p̂teacher) (7) 

L pred = l CE
(
p̂dynamic

, y pseudo
)

(8) 

where y pseudo represents the hard pseudo label obtained by selecting 
the class with highest probability from the teacher’s soft predictions 
p̂teacher. l CE represents the cross-entropy loss using teacher’s hard pre
dictions as pseudo ground truth supervision. We employ hard pseudo 
labels rather than traditional soft knowledge distillation due to the 

significant modality gap between audio and visual features. Soft prob
ability distributions are less reliable for cross-modal transfer, as teacher 
confidence scores may not translate meaningfully across modality 
boundaries. Hard pseudo labels provide more decisive supervision for 
categorical boundary learning. Our comparison shows that soft distil
lation (τ = 4, KL divergence loss) achieves only 87.2 % mAP versus our 
89.0 % mAP, while requiring 8 % longer training time and 5 % higher 
memory usage. The computational overhead makes hard labels more 
suitable for resource-constrained aquaculture applications.

The total loss for the dynamic branch combines both distillation 
objectives, as follows: 

L dynamic = L pred +L feature (9) 

The decomposed distillation strategy described above enables 
effective knowledge transfer while maintaining feature separation. 
However, to fully leverage these complementary representations, an 
intelligent fusion mechanism is required that can adaptively combine 
static acoustic and dynamic behavioral features based on their contex
tual relevance. The following section introduces our cross-modal 
behavioral fusion (CMBF) mechanism that addresses this challenge 
through adaptive weighting and cross-branch information exchange.

2.5. Cross-modal behavioral fusion (CMBF)

After the decomposed cross-modal distillation process described in 
Section 2.4, we obtain enhanced static features f static and dynamic fea
tures fdynamic from the two separate branches. We then propose CMBF to 
effectively combine these complementary representations and produce 
the final feeding intensity prediction. This fusion mechanism is essential 
because simple concatenation or averaging would ignore the varying 
importance of static and dynamic information across different feeding 
scenarios. Traditional fusion approaches either use simple concatena
tion that ignores feature interactions or complex attention mechanisms 
that suffer from computational overhead. CMBF leverages the cross- 
modal knowledge learned through teacher distillation to achieve effec
tive feature integration with linearly scaled computational complexity.

To preserve modality-specific characteristics while enabling effec
tive fusion, we project the static and dynamic features into a shared 
representation space through separate projection networks, as follows.: 

Pstatic = LayerNorm
(

ReLU
(

Linearstatic

(
f static

)))
(10) 

Pdynamic = LayerNorm
(

ReLU
(

Lineardynamic

(
fdynamic

)))
(11) 

where independent projection layers maintain branch-specific infor
mation while enabling subsequent fusion operations. We employ 
LayerNorm and ReLU as standard choices for normalization and activa
tion in CMBF, which are commonly used in efficient neural network 
designs. Our comparative evaluation confirmed that LayerNorm and 
ReLU provide optimal performance for our cross-modal fusion task while 
maintaining computational efficiency suitable for agricultural edge 
deployment.

Building upon the cross-modal knowledge learned through teacher 
distillation, we apply frequency-domain weighting to emphasize 
important spectral components in each branch. The formula is shown in 
below: 

wstatic = σ
(
Linear

(
Pstatic) ) (12) 

wdynamic = σ
(
Linear

(
Pdynamic) ) (13) 

where σ(⋅) denotes the sigmoid activation function. The learned weights 
identify the most discriminative frequency components for each mo
dality.

The enhanced features are then computed as follows: 
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Fstatic
enhanced = Pstatic ⊙ wstatic (14) 

Fdynamic
enhanced = Pdynamic ⊙ wdynamic (15) 

Where ⊙ denotes element-wise multiplication (Hadamard product), 
enabling selective enhancement of individual feature dimensions based 
on their learned importance weights. Fstatic

enhanced represents frequency- 
enhanced static acoustic features that emphasize important spectral 
components through learned frequency weights, while Fdynamic

enhanced repre
sents behaviorally enhanced dynamic features that incorporate both 
frequency-domain refinement and behavioral knowledge from the vi
sual teacher network. This dual enhancement ensures that static features 
capture refined acoustic patterns while dynamic features integrate cross- 
modal behavioral understanding.

Rather than using fixed fusion weights, CMBF computes adaptive 
weights based on feature similarity and interaction strength, The for
mula is shown below: 

I = Fstatic
enhanced ⊙ Fdynamic

enhanced ∈ RT×D (16) 

S =

∑(
Fstatic

enhanced ⊙ Fdynamic
enhanced

)

⃒
⃒
⃒
⃒
⃒Fstatic

enhanced

⃒
⃒⋅
⃒
⃒
⃒Fdynamic

enhanced

⃒
⃒
⃒

⃒
⃒
⃒+ ε

(17) 

where S represents the normalized cosine similarity (range 0–1) 
measuring the complementarity between static acoustic and dynamic 
behavioral features. A higher similarity values (S > 0.6) indicate a 
stronger feature complementarity, where both acoustic characteristics 
contribute equally to feeding intensity recognition. A lower value (S <
0.3) suggests that one feature type is more discriminative, enabling the 
model to adaptively emphasize static patterns (ambient sounds) or dy
namic patterns (feeding activity sounds) based on the specific feeding 
scenario. 

wmodal = σ(MLP(mean(I) )+ S ) (18) 

where wmodal represents the adaptive weight that balances static and 
dynamic contributions based on their complementarity, and ε is a small 
constant (e.g., 1e-8) added for numerical stability to prevent division by 
zero. The adaptive weights in CMBF are computed through a learnable 
MLP consisting of a single linear layer with trainable parameters, fol
lowed by the sigmoid activation. The MLP parameters are initialized 
using Xavier uniform initialization (Ennadir et al., 2024) and optimized 
end-to-end with the entire framework using the Adam optimizer (Cui 
et al., 2024), allowing the model to learn optimal fusion strategies 
during training.

Finally, we enable mutual information exchange between branches 
before adaptive fusion as follows: 

score = σ

⎛

⎝
Σ
(

Fstatic
enhanced ⊙ Fdynamic

enhanced

)

̅̅̅̅
D

√

⎞

⎠ (19) 

Pstatic
enhanced = Fstatic

enhanced + score ⊙ Fdynamic
enhanced (20) 

Pdynamic
enhanced = Fdynamic

enhanced + score ⊙ Fstatic
enhanced (21) 

Ffused = wmodal ⊙ Pstatic
enhanced +(1 − wmodal) ⊙ Pdynamic

enhanced (22) 

where 
̅̅̅̅
D

√
is a scaling factor that normalizes the dot product to prevent 

saturation of the sigmoid function, ensuring meaningful gradient flow 
and providing discriminative attention scores across different samples. 
High scores enable more cross-branch information sharing, while low 
scores preserve branch-specific characteristics.

This allows each branch to benefit from the other’s knowledge while 
maintaining computational efficiency with linear complexity order O(D) 

per sample.

3. Dataset

3.1. Data acquisition and experimental system

Our dataset was collected in a controlled aquaculture facility using 
Oplegnathus punctatus as the experimental subject. The fish were housed 
in a recirculating tank (3 m in diameter, 0.75 m in depth) located in 
Yantai, Shandong Province, China. The experimental population con
sisted of 40–100 fish, each weighing approximately 150 g. To capture 
multimodal data, we employed a high-definition digital camera (Hik
vision DS-2CD2T87E(D)WD-L) with a frame rate of 25 fps (1920 ×
1080) and a high-frequency hydrophone (LST-DH01) with a sampling 
frequency of 256 kHz. The camera was positioned on a tripod at 
approximately 2 m height to capture overhead video footage, while the 
hydrophone was submerged underwater to record acoustic data (as 
shown in Fig. 2). The acquisition of video and audio data was syn
chronized to ensure temporal alignment of multimodal information. 
During data collection, we adhered to feeding protocols consistent with 
real aquaculture production environments to ensure fish adaptation and 
minimize appetite loss due to environmental changes. The water con
ditions were maintained as follows: temperature at 26 ± 1◦C, dissolved 
oxygen ≥ 5 mg/L, pH at 7.2 ± 0.5, nitrate ≤ 0.5 mg/L, and ammonia 
nitrogen ≤ 0.8 mg/L. Fish were fed twice daily at 9 AM and 4 PM. The 
feeding process typically lasted 3–15 min per session.

3.2. Data preprocessing and annotation

Under the guidance of aquaculture technicians, we annotated the 
feeding behavior based on observed feeding intensity into four cate
gories: “Strong”, “Medium”, “Weak”, and “None” (as shown in Fig. 3). 
The feeding intensity categories were defined as follows: Strong - sig
nificant water turbulence with high fish aggregation and rapid bait 
consumption; Medium - moderate fish movement toward bait with 
reduced aggregation; Weak - limited fish participation with slow feeding 
behavior; None - no feeding response with dispersed fish distribution. To 
create a fine-grained dataset suitable for cross-modal knowledge distil
lation, we segmented each recording session into 2-second clips, 
resulting in 19,021 synchronized audio–video segments. The dataset 
was partitioned into training (80 %), validation (10 %), and testing (10 
%) sets through random selection while maintaining class balance, 
resulting in 13,421, 2,800, and 2,800 clips, respectively.

For acoustic data preprocessing, we converted raw audio signals into 
log-mel spectrograms, which have proven effective for capturing time
–frequency characteristics of fish feeding sounds. The log-mel spectro
gram transformation was performed using the following parameters: 
window size of 1024 samples, hop length of 512 samples, and 128 mel 
filter banks. This representation provides a compact yet informative 
encoding of acoustic features while maintaining robustness to environ
mental noise commonly present in aquaculture settings. video data was 
preprocessed by extracting frames at the original 25 fps and resized to 
224 × 224 pixels for compatibility with standard deep learning archi
tectures. Data augmentation techniques including horizontal flipping 
and random noise addition were applied during training to enhance 
model generalization. The final dataset distribution across feeding in
tensity categories is presented in Table 1, showing a comprehensive 
collection suitable for training robust cross-modal knowledge distilla
tion models.

4. Experimental setup

4.1. Evaluation metrics

To comprehensively evaluate the performance of our proposed 
AquaDistill framework and enable fair comparison with existing 
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methods, we employ standard classification metrics commonly used in 
fish feeding intensity recognition literature: Accuracy, Precision, Recall, 
and F1-Score and mean Average Precision (mAP). These metrics provide 
complementary perspectives on model performance, with Accuracy 
reflecting overall classification performance, Precision indicating pre
diction reliability, Recall measuring detection completeness, and F1- 
Score providing a balanced assessment particularly valuable for 
handling class imbalance. The metrics are computed as follows: 

Accuracy =
TP + TN

TP + TN + FP + FN
(23) 

Precision =
TP

TP + FP
(24) 

Recall =
TP

TP + FN
(25) 

F1-Score =
2 × Precision × Recall

Precision + Recall
(26) 

mAP =
1
C
∑C

c=1
APc (27) 

where TP, TN, FP, and FN represent true positives, true negatives, false 
positives, and false negatives, respectively. APc represents the average 
precision for class C, computed as the area under the precision-recall 
curve for that class, and C is the total number of classes. For multi- 
class classification, mAP provides a robust evaluation by considering 
the model’s performance across all feeding intensity categories.

4.2. Model training configuration

4.2.1. Teacher model training
The visual teacher model (S3D) is initialized with pretrained weights 

from Kinetics-400 and fine-tuned on our fish feeding dataset. We 
selected S3D over the larger models such as TimeSformer (Kour et al., 
2025) and videoMAE (Li et al., 2025), as they are prone to overfitting on 
our dataset (19,021 samples) and require excessive computational re
sources (150 GFLOPs vs 23.4 GFLOPs) that are impractical for agricul
tural applications. We use the complete training to maintain the same 
data split as the student model training: 13,421 samples for training (80 
% of total dataset), 2,800 samples for validation (10 % of total dataset), 
and 2,800 samples reserved for final testing (10 % of total dataset). This 
ensures consistent data distribution between teacher and student 
training phases. During teacher model fine-tuning, we randomly sample 

16 frames from each 2-second video clip in temporal order to maintain 
the sequential nature of feeding behaviors while reducing computa
tional complexity. The teacher model training employs the Adam opti
mizer with a learning rate of 1e-3 and batch size of 32, fine-tuned for 20 
epochs until convergence. The fine-tuned S3D teacher model achieves 
92.8 % mAP on the validation set, demonstrating effective adaptation 
from the general action recognition domain (Kinetics-400) to the spe
cific aquaculture monitoring task.

To accelerate student model training and ensure reproducible re
sults, we pre-extract and cache all teacher model outputs after fine- 
tuning completion. Specifically, we extract teacher features and pre
dictions for all 13,315 training samples and save them as tensors. This 
approach eliminates the computational overhead of running the teacher 
network during student training iterations, reducing overall training 
time by approximately 40 % while maintaining identical supervision 
quality for cross-modal knowledge distillation.

4.2.2. Student model training
All experiments were conducted on a high-performance computing 

platform to ensure reproducible results and efficient training. The 
experimental details can be seen in Table 2. We use an NVIDIA GeForce 
RTX 4090 chip with 24 GB of RAM as the graphics card for core 
computation, paired with an Intel Core i9-13900 K processor running at 
3 GHz. The experimental environment utilizes CUDA 12.1 for GPU ac
celeration, Python 3.9.16 for implementation, and PyTorch 2.0.1 as the 
deep learning framework. The student model (AquaDistill) training 
employs the Adam optimizer with an initial learning rate of 1e-3, trained 
for 300 epochs with a batch size of 32. To prevent overfitting and ensure 
model generalization, we implement early stopping with a patience of 
15 epochs and apply dropout regularization with a rate of 0.5. The 
training utilizes pre-cached teacher features and predictions to perform 
cross-modal knowledge distillation, with the decomposed distillation 
strategy separating acoustic features into static and dynamic branches. 
All random processes are controlled using a fixed seed (25) to ensure 
experimental reproducibility across different runs. Training requires 
approximately 4 h in total: including the fine-tuning of teacher model 
(20 epochs, ~1.5 h) and the training of the student model (300 epochs, 
~2.5 h). We report mean performance across 3 independent runs with 
different weight initializations, following standard practice in deep 
learning research where multiple runs with different random seeds are 
the most commonly accepted method for assessing model stability and 
reporting variance. The results are presented as mean ± standard de
viation to indicate performance consistency across different 
initializations.

Fig. 2. Experimental systems for data collection.
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Fig. 3. Video frames and mel spectrogram visualizations of four different fish feeding intensity: “Strong”, “Medium”, “Weak” and “None”.
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5. Results and discussion

5.1. Overall performance comparison

We comprehensively evaluate our AquaDistill framework against 
state-of-the-art methods across different modality paradigms. Our 
comparison includes vision-based approaches including, S3D (Xie et al., 
2018), I3D (Yang et al., 2025), 3D-ResNet18 (Al-Khater and Al-Madeed, 
2024) and 3D-ViT (Zhang et al., 2024), multimodal audio-visual 
methods including, U-FFIA (Cui et al., 2024), MFFFI (Du et al., 2023), 
and MMFINet (Gu et al., 2025), and audio-only baselines including, 
GhostNet (Du et al., 2023), Swin Transformer (Zeng et al., 2023), 
MobileNetV3 (Du et al., 2023), and MobileNetV2 (Kong et al., 2020). 
Table 3 presents detailed performance comparisons on our fish feeding 
intensity recognition dataset, demonstrating the effectiveness of our 
cross-modal knowledge distillation strategy.

Our AquaDistill achieves substantial improvements over existing 
audio-only approaches, establishing a new state-of-the-art for acoustic- 
based fish feeding intensity recognition. Compared to the best previ
ous audio method MobileNetV2 (82.6 % mAP), our approach delivers a 
significant 6.4 % improvement (89.0 % mAP), representing a relatively 
7.8 % improvement. This demonstrates the effectiveness of cross-modal 
knowledge transfer in enhancing acoustic feature discrimination capa
bilities. Notably, advanced architecture designed for other domains 
shows limitations when applied to acoustic data. The Swin Transformer, 
despite its remarkable success in visual tasks, achieves only 79.5 % mAP 

on our acoustic dataset. This suboptimal performance confirms that 
vision-specific inductive biases, particularly the patch-based attention 
mechanism optimized for spatial relationships, do not effectively 
transfer to the time–frequency representation of audio. In contrast, our 
domain-adapted approach through decomposed distillation successfully 
captures the temporal-spectral patterns essential for feeding behavior 
recognition. The complexity analysis shows AquaDistill’s advantage in 
computational efficiency, offering a potential advantage for edge 
deployment. With only 1.7 GFLOPs, our method requires significantly 
fewer computations than visual (23.4–78.3 GFLOPs) and multimodal 
approaches (32.1–67.2 GFLOPs) while outperforming audio baselines. 
This efficiency makes AquaDistill suitable for resource-constrained 
aquaculture devices such as embedded controllers and low-cost 
terminals.

A critical contribution of our work is significantly narrowing the 
performance disparity between audio and visual modalities. The orig
inal gap between the best audio method (MobileNetV2: 82.6 %) and the 
visual teacher (S3D: 92.8 %) spans 10.2 %. Our AquaDistill reduces this 
gap to merely 3.8 % (89.0 % vs 92.8 %), representing a 63 % reduction 
in performance disparity. Fig. 4 provides detailed confusion matrix 
analysis revealing the classification improvements achieved by our 
AquaDistill framework. The original audio baseline (Fig. 4a) exhibits 
substantial confusion between adjacent feeding intensity levels, partic
ularly struggling with medium-weak (classes 2–3) discrimination where 
108 samples are misclassified between these categories in both di
rections. This bi-directional confusion indicates the inherent difficulty in 
distinguishing subtle intensity variations using acoustic features alone, 
especially between moderate feeding states. Our enhanced audio 
approach (Fig. 4b) demonstrates remarkable improvement in classifi
cation precision across all categories. The confusion between medium- 
weak feeding has been reduces significantly (75 vs 108 for medium- 
weak, 86 vs 98 for weak-medium), while strong feeding recognition 
improves dramatically with better separation from other categories. 
Most notably, the none-feeding category (class 0) achieves near-perfect 
recognition with only 20 total misclassifications versus 58 in the original 
model, indicating that our cross-modal distillation particularly enhances 
the detection of feeding absence. Compared with the visual teacher 
model (Fig. 4c), our enhanced audio approach achieves competitive 
confusion patterns despite using only acoustic input. The visual model 
maintains advantages in overall precision, particularly in distinguishing 
medium and weak categories, but our enhanced audio method suc
cessfully captures the key discriminative patterns for extreme categories 
(none and strong feeding).

While multimodal audio-visual methods achieve the highest absolute 
performance (U-FFIA: 95.1 % mAP, MMFINet: 94.6 % mAP), they 
require substantial computational overhead and dual-stream processing. 
Our audio-only AquaDistill approach (89.0 % mAP) delivers remarkable 
performance considering its single-modality constraint, achieving only 
6 %-7% lower accuracy than the best multimodal methods while 
requiring significantly fewer resources. Multimodal methods 
(93.9–95.1 % mAP) outperform single visual modality (85.1–92.8 % 

Table 1 
Dataset distribution for fish feeding intensity classification.

Feeding Intensity Training Validation Testing Total

Strong 4053 869 869 5791
Medium 3801 815 815 5431
Weak 3356 719 719 4794
None 2104 603 603 3111
Total 13,421 2800 2800 19,021

Table 2 
Experimental configuration and parameter settings.

Configuration Model/Version

CPU Intel Core i9-13900 K @ 3 GHz
GPU NVIDIA GeForce RTX 4090 (24 GB)
Programming Language Python 3.9.16
CUDA Version 12.1
Deep Learning Framework PyTorch 2.0.1
Optimizer Adam
Batch Size 128
Learning Rate 1e-3
Max Epochs 300
Early Stopping Patience 15
Dropout Rate 0.5
Random Seed 25

Table 3 
Performance comparison with existing methods on fish feeding intensity recognition dataset.

Method Input Modality mAP (%) Acc (%) F1 (%) Params (M) Model Size (MB) FLOPs (G) Inference (ms)

S3D Visual 92.8 ± 0.2 92.3 ± 0.3 92.5 ± 0.2 7.9 31.7 23.4 6.4
I3D Visual 88.2 ± 0.4 87.5 ± 0.3 87.8 ± 0.3 12.5 50.0 42.1 15.3
3D-RestNet18 Visual 85.1 ± 0.3 84.6 ± 0.4 84.8 ± 0.3 33.5 134.2 78.3 22.8
3D-ViT Visual 86.4 ± 0.3 85.9 ± 0.2 86.1 ± 0.3 27.8 111.2 65.7 18.7
U-FFIA Audio + Visual 95.1 ± 0.2 94.5 ± 0.2 95.0 ± 0.2 21.6 86.4 67.2 28.8
MFFFI Audio + Visual 93.9 ± 0.3 93.5 ± 0.2 93.7 ± 0.3 10.6 42.4 34.8 24.2
MMFINet Audio + Visual 94.6 ± 0.2 94.1 ± 0.3 94.4 ± 0.2 10.01 40.0 32.1 23.6
GhostNet Audio 81.4 ± 0.5 80.1 ± 0.4 81.7 ± 0.3 5.2 20.8 2.3 28.0
Swin Transformer Audio 79.5 ± 0.6 76.8 ± 0.5 77.2 ± 0.4 28 112.0 8.7 26.5
MobileNetV3 Audio 80.2 ± 0.4 79.1 ± 0.3 78.7 ± 0.5 3.7 14.8 1.8 2.3
MobileNetV2 Audio 82.6 ± 0.4 80.5 ± 0.3 80.7 ± 0.3 3.5 14.0 1.6 1.2
AquaDistill (Ours) Audio 89.0 ± 0.3 87.0 ± 0.2 87.2 ± 0.2 5.9 23.6 1.7 1.4
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mAP), which in turn exceeds audio-only approaches (79.5–89.0 % 
mAP). However, the modest gains of multimodal methods (+2.3–2.8 % 
over best visual methods) come at substantial computational cost, 
requiring 17–20 × longer inference time compared to our audio-only 
solution. This demonstrates that while multimodal fusion provides in
cremental benefits, our cross-modal distillation approach offers a 
compelling trade-off between performance and practical deployment 
constraints.

5.2. Ablation study

To validate the effectiveness of our proposed AquaDistill framework, 
we conduct comprehensive ablation studies examining both the 

contribution of core components and the superiority of our fusion 
mechanism. All experiments are performed under identical conditions 
using our fish feeding intensity dataset.

5.2.1. Core component analysis
Table 4 presents the incremental contribution of each major 

component in our framework. To validate the necessity of our dual- 
branch design, we first examine single-branch performance. The static 
branch only (identical to baseline at 82.6 % mAP) represents training 
without any cross-modal distillation, preserving only inherent acoustic 
patterns. The dynamic branch only achieves 84.3 % mAP through cross- 
modal distillation from visual teacher, demonstrating the value of 
behavioral knowledge transfer from the visual modality. However, the 

Fig. 4. Confusion matrices comparison for fish feeding intensity classification. (a) Original audio baseline using MobileNetV2 showing significant confusion between 
adjacent intensity levels, particularly between classes 2–3 (medium-weak) with 108 misclassifications each direction. (b) Enhanced audio performance using our 
AquaDistill framework demonstrating substantial reduction in inter-class confusion and improved diagonal dominance. (c) Video classification results from S3D 
teacher model showing superior class separation capabilities. Classes represent: 0-None, 1-Strong, 2-Medium, 3-Weak feeding intensities.
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combined decomposed cross-modal distillation (85.2 % mAP) provides 
the most substantial gain (+2.6 % over baseline), outperforming either 
single branch. This significant improvement demonstrates that sepa
rating static acoustic and dynamic behavioral learning prevents feature 
entanglement that commonly occurs in conventional distillation ap
proaches. By allowing the static branch to preserve audio-specific 
spectral characteristics while the dynamic branch focuses on motion 
patterns learned from visual teacher, our decomposed strategy maxi
mizes knowledge transfer effectiveness while avoiding representational 
conflicts.

Unlike direct distillation methods that force audio features to 
simultaneously learn both acoustic properties and visual motion pat
terns, leading to conflicting learning objectives and suboptimal feature 
representations, our proposed decomposition-based strategy maintains 
separate learning pathways to avoid representational conflicts. As 
illustrated in Fig. 5, conventional single-branch distillation results in 
overlapping, poorly-separated clusters due to feature entanglement, 
while our dual-branch approach produces well-defined class boundaries 
with clear cluster separation. By allowing the static branch to preserve 
audio-specific spectral characteristics while the dynamic branch focuses 
on motion patterns learned from visual teacher, our proposed strategy 
enables effective knowledge transfer across the modalities. The addition 
of CMBF fusion contributes an additional 2.6 % (85.2 % – 87.8 %), 

indicating that simple feature combination is insufficient for optimal 
performance. The CMBF mechanism’s adaptive weighting based on 
feature similarity and interaction enables sample-specific fusion strate
gies, allowing the model to emphasize static features for ambient- 
dominated samples while prioritizing dynamic features for movement- 
intensive feeding behaviors. The final framework optimization (+1.2 
%) incorporates adaptive learning rate scheduling, label smoothing (α =
0.1), and optimized loss weighting, demonstrating that systematic 
optimization of the complete pipeline yields additional gains beyond the 
contributions by the individual component.

5.2.2. Fusion method comparison
Table 5 reveals critical insights into multimodal feature fusion 

effectiveness. Simple concatenation (85.2 % mAP) and element-wise 
addition (85.5 % mAP) show limited improvement because they treat 
all features equally without considering their contextual importance. 
These naive approaches cannot adapt to the varying relevance of static 
vs. dynamic information across different feeding scenarios. Self- 
attention (86.1 % mAP) and cross-attention (86.4 % mAP) demon
strate improved performance by learning feature relationships but suffer 
from two critical limitations: quadratic computational complexity O 
(T2D) that significantly increases inference time (1.9–2.1 ms vs 1.4 ms), 

Table 4 
Core component ablation study.

Components mAP 
(%)

Acc (%) F1 (%) Params 
(M)

Baseline (MobileNetV2) 82.6 ±
0.4

80.5 ±
0.3

80.7 ±
0.3

3.5

+ Static Branch Only (No 
Distillation)

82.6 ±
0.4

80.5 ±
0.3

80.7 ±
0.3

3.5

+ Dynamic Branch Only (Video 
Distillation)

84.3 ±
0.3

82.4 ±
0.2

82.6 ±
0.3

4.0

+ Decomposed Distillation (Both 
Branches)

85.2 ±
0.3

83.1 ±
0.2

83.4 ±
0.2

5.1

+ CMBF Fusion 87.8 ±
0.2

85.7 ±
0.2

86.1 ±
0.2

5.9

+ Full Framework 89.0 ±
0.3

87.0 ±
0.2

87.2 ±
0.2

5.9

Fig. 5. T-sne visualization demonstrating feature entanglement and disentanglement. (a) conventional single-branch distillation exhibits feature entanglement with 
overlapping, poorly-separated clusters due to conflicting learning objectives. (b) our aquadistill approach achieves clear feature disentanglement with well-defined 
class boundaries, validating the effectiveness of decomposed cross-modal learning in preventing representational conflicts between static acoustic and dynamic 
behavioral features.

Table 5 
Fusion method comparison.

Fusion Method mAP 
(%)

Acc 
(%)

F1 
(%)

Params 
(M)

Inference 
(ms)

Complexity

Concatenation 85.2 
± 0.3

83.1 
± 0.2

83.4 
± 0.2

6.1 1.5 O (D)

Element-wise 
Addition

85.5 
± 0.4

83.4 
± 0.3

83.7 
± 0.2

5.9 1.4 O (D)

Self-attention 86.1 
± 0.2

84.2 
± 0.2

84.5 
± 0.2

6.5 1.9 O (T2D)

Cross- 
attention

86.4 
± 0.3

84.5 
± 0.2

84.8 
± 0.3

6.8 2.1 O (T2D)

CMBF(Ours) 87.8  
± 0.2

85.7  
± 0.2

86.1  
± 0.3

5.9 1.4 O (D)

Note: T: Temporal dimension, representing the number of time frames in the 
processed feature; D: Feature dimension, representing the dimensionality of 
features used in fusion operations.
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and temporal over-smoothing that diminishes the fine-grained temporal 
boundaries essential for accurate feeding intensity classification. The 
attention mechanisms aggregate information across temporal di
mensions, potentially blurring the sharp transitions between different 
feeding states. We also evaluate alternative attention mechanisms 
adapted for our dual-branch fusion, including squeeze-and-excitation 
(SE) modules and convolutional block attention module (CBAM). 
When applied to our concatenated features, SE modules achieve only 
84.1 % mAP, struggling with cross-branch interaction modeling due to 
their channel-wise focus. CBAM applied to fused features demonstrates 
84.8 % mAP but introduces significant computational overhead (2.4 ms 
inference time vs 1.4 ms for CMBF) and fails to preserve the temporal 
locality crucial for feeding behavior recognition. These results highlight 
the importance of our specialized CMBF design for cross-branch adap
tive weighting in acoustic behavioral analysis.

Our CMBF achieves the best performance (87.8 % mAP) while 
maintaining excellent efficiency (1.4 ms, 5.9 M parameters) due to its 
intelligent design that addresses the fundamental limitations of con
ventional fusion approaches. The adaptive sample-specific weighting 
mechanism enables CMBF to dynamically adjust the contribution bal
ance between static and dynamic features based on the content char
acteristics of each audio sample. This contextual adaptation is 
particularly crucial for feeding intensity recognition, where optimal 
performance requires balancing static acoustic patterns and dynamic 
behavioral features. The CMBF’s adaptive weighting mechanism based 
on feature similarity and interaction strength enables sample-specific 
fusion strategies, automatically adjusting the relative contributions of 
static and dynamic branches, according to the underlying acoustic 
characteristics of each input. Furthermore, CMBF’s temporal locality 
preservation design maintains the discriminative temporal patterns 
essential for distinguishing between feeding intensity levels, avoiding 
the over-smoothing effects that plague traditional attention mecha
nisms. This preservation of fine-grained temporal boundaries is critical 
for detecting rapid transitions in feeding behavior, which often occur 
over short time scales but carry significant information about feeding 
intensity changes. The linear computational complexity O(D) ensures 
that these sophisticated fusion capabilities come without substantial 
computational overhead, making CMBF both effective and practical for 
real-time aquaculture monitoring applications.

5.3. Qualitative analysis

To gain deeper insight into the effectiveness of our decomposed 
cross-modal distillation, we conduct comprehensive qualitative analysis 
through feature visualization and training dynamics examination.

Fig. 6 demonstrates the progressive alignment between audio dy
namic features and visual teacher representations throughout the 
training process. The cosine similarity curve reveals three distinct pha
ses of knowledge transfer: an initial rapid alignment phase (epochs 
0–50) where similarity increases from 0.55 to 0.68, indicating effective 
initial knowledge absorption; a gradual refinement phase (epochs 
50–200) with steady improvement to 0.77, suggesting continuous 
feature space adaptation; and a convergence phase (epochs 200–300) 
where similarity stabilizes at the maximum value of 0.7693. This 
training trajectory demonstrates that our decomposed distillation 
strategy successfully guides the audio dynamic branch to learn visual 
behavioral patterns without forcing premature convergence, allowing 
for natural feature space evolution.

Fig. 7 demonstrates the progressive improvement of cross-modal 
alignment throughout training across three critical epochs. The t-SNE 
visualizations in Fig. 7(a) reveal the evolution of audio-visual feature 
alignment from epoch 40 to 280. At epoch 40, the overlap between 
audio dynamic features (red points) and visual teacher features (blue 
points) is limited, with distinct separation indicating initial learning 
stages. By epoch 150, substantial convergence begins to emerge, 
showing increased co-location of the two modalities. At epoch 280, the 
features achieve remarkable alignment with extensive overlap, con
firming successful knowledge transfer from the visual teacher to the 
audio dynamic branch. Fig. 7(b) provides complementary evidence by 
visualizing feature distributions colored by class labels across the same 
temporal progression. The consistent class separability maintained 
throughout training demonstrates that the cross-modal alignment does 
not compromise discriminative capability. Each feeding intensity cat
egory—None (Class 0, green), Strong (Class 1, red), Medium (Class 2, 
orange), and Weak (Class 3, blue)—forms distinct, well-separated clus
ters that become increasingly coherent as training progresses. This 
preservation of class boundaries while achieving cross-modal alignment 
validates our decomposed distillation approach. The cosine similarity 
distributions in Fig. 7(c) provide quantitative validation of the align
ment progression. The mean similarity improves substantially from 

Fig. 6. Cross-modal feature alignment dynamics during training. The cosine similarity between audio dynamic features and visual teacher features progressively 
increases from 0.55 to 0.770 over 300 epochs, demonstrating effective knowledge transfer through our decomposed distillation approach. The red dashed line 
indicates the final maximum similarity achieved.
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0.696 at epoch 40 to 0.744 at epoch 150, and finally reaches 0.770 at 
epoch 280, marked as “Good Alignment.” The similarity histograms 
show a clear shift toward higher values over time, with the distribution 
becoming increasingly concentrated around 0.7–0.8 by epoch 280. This 
progression demonstrates consistent and robust knowledge transfer 
most samples rather than selective alignment for easy cases.

These results collectively validate the effectiveness of our decom
posed cross-modal distillation approach. First, the progressive similarity 
improvement curve confirms that decomposed distillation enables 
controlled knowledge transfer without catastrophic forgetting of audio- 
specific information. Second, the maintained class separability while 
achieving high cross-modal similarity indicates that our method suc
cessfully transfers behavioral understanding without compromising 
discriminative capability. Finally, the consistent alignment across 
diverse samples demonstrates the generalizability of our cross-modal 
knowledge transfer mechanism, supporting its practical applicability 
for real-world aquaculture monitoring scenarios.

5.4. Backbone generalizability analysis

A key strength of our AquaDistill framework lies in its architecture- 
agnostic design, consistently delivering performance improvements 
regardless of the underlying backbone network. To demonstrate the 
generalizability and robustness of our AquaDistill framework, we 
conduct comprehensive experiments across various lightweight back
bone architectures commonly used in resource-constrained applications. 
We evaluate our framework using five representative lightweight ar
chitectures: MobileNetV2 (baseline), MobileNetV3, MobileViT, 
EfficientNet-B0, and ShuffleNetV2. All backbones are adapted for audio 
spectrogram processing with identical input resolution (1 × 126 × 128) 
and training configurations to ensure fair comparison. Each backbone 
undergoes the same decomposed distillation process with our S3D visual 
teacher, maintaining consistent distillation loss weights and CMBF 
fusion mechanisms across all experiments.

Table 6 presents comprehensive results demonstrating that Aqua
Distill consistently improves performance across all tested backbones. 

Fig. 7. Progressive cross-modal alignment analysis across training epochs. (a) t-SNE visualization showing the evolution of audio-visual feature alignment from 
epoch 40 to 280. Red points represent dynamic audio features and blue points represent visual teacher features. The increasing overlap demonstrates progressive 
knowledge transfer, with substantial alignment achieved by epoch 280. (b) Feature distribution by class labels (None: green, Strong: red, Medium: orange, Weak: 
blue) across the same epoch, showing maintained class separability throughout the alignment process. (c) Cosine similarity distributions between audio and visual 
features, with mean similarity improving from 0.696 (epoch 40) to 0.770 (epoch 280), indicating robust and consistent cross-modal knowledge transfer.
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The improvements range from 4.8 % (MobileViT) to 6.4 % (Mobile
NetV2) in mAP, with an average improvement of 5.6 %. Notably, our 
framework achieves the best absolute performance with MobileNetV2 
(89.0 % mAP), which also maintains the optimal parameter-efficiency 
ratio (15.1 Acc%/M). This superior performance stems from 
MobileNetV2′s depth wise separable convolutions that naturally align 
with the spectral decomposition patterns in audio data, making it 
particularly receptive to our distillation-guided feature enhancement. 
MobileNetV3 shows substantial improvement (+5.2 % mAP) but with 
slightly higher computational overhead due to its squeeze-and- 
excitation modules. EfficientNet-B0 demonstrates good performance 
gains (+5.1 % mAP) while maintaining balanced parameter count (5.3 
M), though its compound scaling design introduces unnecessary 
complexity for our audio processing task. MobileViT, despite being a 
vision transformer variant, shows the smallest improvement (+4.8 % 
mAP), confirming our earlier observation that transformer architectures 
designed for spatial relationships struggle with audio spectrograms’ 
time–frequency characteristics. ShuffleNetV2 achieves notable 
improvement (+5.4 % mAP) with the smallest parameter footprint (4.1 
M), making it attractive for ultra-lightweight deployments despite 
slightly lower absolute performance. The efficiency analysis reveals 
crucial insights for practical deployment decisions. While MobileNetV2 
achieves the best accuracy-to-parameter ratio (15.1 Acc%/M), Shuf
fleNetV2 provides the best accuracy-to-size ratio for memory- 
constrained environments. MobileViT, despite its transformer heritage, 
requires significantly more parameters (8.7 M) for modest performance 
gains, highlighting the mismatch between vision transformers and audio 
processing requirements. These findings suggest that depthwise sepa
rable convolution architectures (MobileNetV2/V3, ShuffleNet) are 
naturally better suited for our cross-modal distillation approach.

Across all architectures, we observe consistent improvement pat
terns: decomposed distillation contributes the largest gains (2.4–2.8 %), 
CMBF fusion adds significant value (2.1–2.6 %), and framework opti
mization provides additional refinements (0.8–1.2 %). This consistency 

validates that our technical innovations address fundamental challenges 
in audio-based feeding recognition rather than exploiting architecture- 
specific characteristics. All tested backbones maintain real-time pro
cessing capabilities with inference times ranging from 1.2 ms (Shuf
fleNetV2) to 1.8 ms (MobileViT). The minimal speed differences 
demonstrate that our framework’s computational overhead is negligible 
compared to backbone computation, ensuring that architecture selec
tion can prioritize accuracy-parameter trade-offs without sacrificing 
real-time performance requirements for aquaculture monitoring 
applications.

5.5. Real-world environment validation

To demonstrate the real-world applicability of our method, we 
conducted experiments with a commercial aquaculture facility at the 
Guangzhou Aquatic Products Promotion Station, China (as shown in 
Fig. 8). We collected 8,900 audio-visual samples of Lotus Carp fish, a 
common aquaculture species, from a tank (4 m × 2 m × 3 m). This real- 
world environment presented challenges such as environmental noise, 
water surface reflection, and foams, which are not present in controlled 
settings. The dataset maintained the same specifications as our 
controlled dataset, with 2-second audio-visual clips annotated by 
experienced technicians. We randomly split the real-world dataset into 
training (70 %), validation (10 %), and testing (20 %) sets, resulting in 
6,230, 890, and 1,780 samples, respectively.

Due to the turbid water conditions typical of commercial aquaculture 
facilities, visual classification performance was significantly impacted, 
achieving only 84 % accuracy compared to 92.3 % in controlled settings. 
The challenging visual conditions resulted from multiple factors: water 
turbidity reduced fish visibility, surface reflections created visual arti
facts, and foam formation periodically obscured the monitoring area. 
The audio-only baseline similarly decreased to 79.3 % accuracy due to 
increased environmental noise and acoustic interference, representing a 
smaller performance degradation than the visual modality. We fine- 

Table 6 
Backbone generalizability analysis results.

Backbone Params (M) Model Size (MB) Baseline mAP (%) AquaDistill mAP (%) Improvement Acc (%/M) Inference (ms)

MobileNetV2 5.9 23.6 82.6 89.0 +6.4 15.1 1.4
MobileNetV3 6.2 24.8 80.2 85.4 +5.2 13.8 1.5
MobileViT 8.7 34.8 79.8 84.6 +4.8 9.7 1.8
EfficientNetB0 5.3 21.2 81.1 86.2 +5.1 16.3 1.6
ShuffleNetV2 4.1 16.4 78.9 84.3 +5.4 20.6 1.2

Fig. 8. Real-world aquaculture facility experimental setup and data characteristics. (a) A Commercial aquaculture tank at Guangzhou Aquatic Products Promotion 
Station showing turbid water conditions, surface foam, and Lotus Carp fish in a 4 m × 2 m × 3 m tank. (b) The corresponding mel-spectrogram of Lotus Carp feeding 
audio showing complex acoustic environment with background noise, water circulation sounds, and environmental interference patterns across the frequency 
spectrum from 0-16384 Hz over a 2-second duration.
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tuned our pre-trained AquaDistill model on 6,230 Lotus Carp training 
samples using a two-stage approach to preserve the learned cross-modal 
alignment. Initial frozen-backbone training (20 epochs, lr = 5e-4) adapts 
the fusion module without disrupting audio-visual knowledge, followed 
by end-to-end refinement (30 epochs, lr = 1e-4) with early stopping to 
prevent overfitting on the smaller dataset. This fine-tuned AquaDistill 
achieved 83.6 % accuracy, demonstrating a 4.3 % improvement over the 
audio baseline and effectively narrowing the audio-visual gap to merely 
0.4 % in this challenging real-world scenario.

The substantial improvement (79.3 % to 83.6 %) in real-world 
conditions validates several key aspects of our approach. First, our 
framework demonstrates excellent transferability across different spe
cies and environments, with the pre-trained knowledge successfully 
adapting to Lotus Carp from the original Oplegnathus punctatus dataset. 
Second, the reduced modality gap (0.4 % vs 5.3 % in controlled settings) 
indicates that acoustic signals maintain more consistent quality across 
environmental conditions, supporting our hypothesis that audio-based 
systems offer superior deployment reliability. Finally, the 5.4 % rela
tive improvement in challenging conditions exceeds the controlled 
environment gains, suggesting that our method provides greater value in 
practical deployment scenarios where environmental factors limit visual 
system effectiveness.

6. Conclusion

In this paper, we have introduced AquaDistill, a novel cross-modal 
knowledge distillation framework designed to enhance audio-only fish 
feeding intensity recognition by transferring visual knowledge during 
training while requiring only acoustic input during inference. Our 
approach incorporates a decomposed distillation strategy that separates 
audio features into static acoustic and dynamic behavioral branches, 
CMBF for intelligent feature integration, and hybrid distillation losses 
enabling effective knowledge transfer while avoiding feature entangle
ment. Our framework achieves 89 % mAP and 87 % accuracy, repre
senting improvements of 7 % and 5 % respectively over baseline 
approaches while maintaining exceptional computational efficiency 
with only 5.9 M parameters and 1.2 ms inference time. The method 
successfully reduces the audio-visual performance gap by 63 %, 
demonstrating robust generalizability across various lightweight back
bones and superior performance in challenging commercial aquaculture 
conditions. Our results show the potential for deploying high-accuracy 
feeding intensity recognition systems in challenging underwater envi
ronments where visual systems may fail due to water turbidity or 
lighting conditions, indicating that AquaDistill may be valuable for 
resource-constrained edge deployments in commercial aquaculture 
monitoring applications. The successful cross-species adaptation from 
Oplegnathus punctatus to Lotus Carp further confirms the framework’s 
practical applicability across diverse aquaculture species and environ
ments. The cross-modal feature alignment visualization provides 
compelling evidence of successful knowledge transfer, validating the 
effectiveness of our decomposed distillation approach for optimizing 
feeding management in aquaculture settings. Our study has several 
limitations. First, validation is limited to two fish species (Oplegnathus 
punctatus and Lotus Carp), constraining generalizability claims across 
diverse aquaculture species. Second, the performance gap between 
controlled (89.0 % mAP) and real-world environments (83.6 % mAP) 
suggests scalability challenges in highly variable commercial settings 
with different water conditions and environmental factors. To address 
these limitations, future work could explore extending applicability to 
diverse aquaculture species and integrating additional modalities such 
as environmental sensors. Furthermore, investigating the application of 
our cross-modal distillation approach to other aquaculture monitoring 
tasks such as fish health assessment could establish a comprehensive 
framework for intelligent aquaculture management systems.
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