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Aquaculture management

Fish feeding intensity recognition (FFIR) is crucial for sustainable aquaculture management and production
optimization. Acoustic-based methods offer non-invasive, cost-effective monitoring in turbid water conditions
where visual systems fail. However, acoustic signals struggle to capture temporal behavioral dynamics (such as
fish movement patterns) and spatial motion patterns (such as fish aggregation and swimming trajectories) easily
detected by visual systems, limiting their discriminative capability for behavioral analysis. This limitation results
in a significant performance gap between the best acoustic methods and visual approaches. To address these
challenges, we propose AquaDistill, a novel cross-modal knowledge distillation framework that enhances audio-
only systems by transferring knowledge from visual modalities during training while requiring only acoustic
input during inference. AquaDistill incorporates a decomposed distillation strategy that separates audio features
into static acoustic and dynamic behavioral branches, with hybrid distillation losses enabling effective motion
knowledge transfer while avoiding feature entanglement. In addition, we introduce the cross-modal behavioral
fusion (CMBF) mechanism that leverages distillation-guided knowledge to preserve temporal locality crucial for
behavioral analysis through adaptive feature enhancement and cross-branch information exchange. Unlike
conventional distillation methods that directly inject cross-modal knowledge, our framework maintains feature
separation throughout the learning process while enabling intelligent fusion of complementary acoustic repre-
sentations. Experimental results demonstrate that AquaDistill significantly improves audio-only model perfor-
mance, achieving 89 % mean average precision (mAP) and 87 % accuracy, representing improvements of 7 %
and 5 % respectively compared to baseline approaches, while maintaining exceptional computational efficiency
with only 5.9 M parameters and 1.4 ms inference time. This effectively bridging the performance gap between
acoustic and visual methods while maintaining the deployment advantages of audio-only systems. Our enhanced
acoustic-based approach demonstrates significant potential for practical aquaculture monitoring applications.

1. Introduction Accurate monitoring of feeding behaviors enables farmers to optimize

feeding schedules, reduce waste, and improve fish welfare, ultimately

Fish feeding intensity recognition (FFIR) plays a pivotal role in
aquaculture management, directly impacting production efficiency,
feed optimization, and sustainable farming practices (Li et al., 2020;
Zhao et al., 2024). Global aquaculture production has reached unprec-
edented levels, with worldwide output exceeding 82 million tons in
2023, making it one of the fastest-growing food production sectors
(Siddik et al., 2024; Roberts et al., 2024). In practical fish farming op-
erations, feed costs represent one of the largest expenses, often ac-
counting for more than 50 % of total production costs (Cui et al., 2022).

contributing to enhanced productivity and environmental sustainability
(Wang et al., 2024; Zhang et al., 2023).

The development of automated FFIR has been dominated by visual
monitoring approaches, which have demonstrated remarkable progress
over the past decade (Cui et al., 2025). Computer vision technology has
emerged as a popular method to evaluate fish feeding intensity,
leveraging the distinct visual features that fish exhibit during different
feeding states. Early researchers employed background subtraction and
optical flow techniques to extract target features for feeding index
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determination (Zhao et al., 2017, Zhou et al., 2018). Although these
methods could capture temporal feeding behaviors, they suffered from
high computational load due to the use of complex foreground seg-
mentation processes and performance degradation due to environ-
mental interference such as water surface fluctuations and reflective
areas (Zhou et al., 2017). Deep learning has revolutionized fish feeding
analysis, with enhanced MobileNetV3 networks achieving 96.4 % ac-
curacy and transformer-based methods like DCA-MVIT reaching 96.62
% precision (Feng et al., 2022; Zhang et al., 2023; Hu et al., 2025).
Despite these achievements, vision-based approaches face fundamental
limitations caused by water quality, lighting conditions, and surface
reflection that restrict their widespread adoption in commercial aqua-
culture operations (Du et al., 2023).

Compared with vision-based methods, acoustic-based monitoring
methods have emerged as an alternative solution since acoustics are
unaffected by water turbidity, lighting conditions, or surface reflections
that commonly degrade visual monitoring systems (Cui et al., 2024; Du
et al., 2024). Additionally, acoustic signals are more compact than video
data, requiring less storage and computational resources, making them
particularly suitable for resource-constrained aquaculture monitoring
devices (Gao et al., 2020; Lin et al., 2022). Recent agricultural Al de-
velopments have emphasized lightweight models for edge deployment
(Lv et al.,, 2024), with knowledge distillation techniques enabling
complex models to be transferred to resource limited devices (Espejo-
Garcia et al., 2025; Li et al., 2025). However, existing distillation ap-
proaches focus on single-modality compression rather than cross-modal
enhancement (Sai et al., 2025). Deep learning approaches using mel
spectrograms have emerged as particularly effective representations for
fish feeding sounds (Cui et al., 2022), as they capture the time-
—frequency characteristics of feeding activities while providing robust-
ness to certain types of noise. Building upon this foundation, Du et al.
(2023) introduced GhostNet, a lightweight architecture specifically
tailored for acoustic FFIR that reduces computational requirements
while maintaining high accuracy. Similarly, Igbal et al. (2024) proposed
an approach combining convolutional neural networks with self-
attention mechanisms for Oplegnathus punctatus feeding intensity clas-
sification, achieving state-of-the-art performance on mel spectrograms.
However, despite these compelling advantages, acoustic-based fish
monitoring systems face a fundamental performance limitation: they
cannot achieve the recognition accuracy levels demonstrated by
advanced vision-based approaches (Cui et al., 2025). This disparity
primarily stems from the limitations of single-modality audio signals,
which lack the rich “physical and motion features”, limiting their
discriminative capability for fine-grained behavioral analysis (Cui et al.,
2024; Li et al., 2024).

Recent advances in cross-modal knowledge distillation have
demonstrated significant potential in bridging performance gaps be-
tween different modalities across various domains (Huo et al., 2024).
Cross-modal knowledge distillation extends traditional distillation to
multimodal learning, where a pretrained network from one modality
provides supervision to a student network from another modality (Wang
et al., 2023). Contemporary methods range from traditional response-
based and feature-based approaches to advanced paradigms including
self-distillation and adversarial strategies (Mansourian et al., 2025;
Wang et al., 2025). Successful applications span medical imaging,
computer vision, and continuous sign language recognition, where
hybrid distillation losses enable effective motion knowledge transfer
while avoiding feature entanglement (Gao et al., 2024; Moslemi et al.,
2024; Kwak et al., 2025). However, existing cross-modal knowledge
distillation methods typically employ direct feature alignment or unified
representation learning, often suffering from feature entanglement
when bridging significantly different modalities like audio and video.
Traditional approaches force the student network to simultaneously
learn both modality-specific characteristics and cross-modal knowledge,
leading to conflicting optimization objectives and suboptimal perfor-
mance. Moreover, the success of cross-modal distillation depends
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heavily on modality relationships, highlighting the need for domain-
specific approaches (Hu et al., 2023). Despite these advances, cross-
modal knowledge distillation remains largely unexplored in underwa-
ter acoustic monitoring.

To address these challenges, we propose AquaDistill, a novel cross-
modal knowledge distillation framework that bridges the acoustic-
visual performance gap through three key innovations: (1) decom-
posed distillation that separates static acoustic and dynamic behavioral
learning, (2) cross-modal behavioral fusion for temporal locality pres-
ervation, and (3) efficient knowledge transfer while maintaining audio-
only deployment advantages. Our contributions are summarized as
follows:

(1) We identify and formalize the fundamental challenge of acoustic-
visual performance disparity in aquaculture monitoring,
providing the first systematic analysis of cross-modal knowledge
transfer requirements in underwater behavioral recognition.

(2) We design a dual-branch framework that explicitly separates
static acoustic and dynamic behavioral feature learning, with
specialized hybrid distillation losses that prevent information
interference while maximizing knowledge transfer effectiveness.

(3) We develop cross-modal behavioral fusion (CMBF) that leverages
distillation-guided knowledge to preserve temporal locality
crucial for behavioral analysis through adaptive cross-branch
enhancement and intelligent fusion weighting, avoiding the
limitations of traditional fusion approaches.

(4) We demonstrate significant performance improvements (89 %
mAP and 87 % accuracy, representing 7 % and 5 % improvements
over baselines) with robust cross-species generalizability from
Oplegnathus punctatus to Lotus carp. Extensive experimental
analysis across different architectures establishes guidelines for
practical aquaculture deployment across diverse species and
environmental conditions.

This paper is structured as follows. Section 2 introduces the proposed
AquaDistill framework and its key components. Section 3 introduces the
dataset and data preprocessing. Section 4 describes the experimental
setup and implementation details. Section 5 presents the results and
provides a comprehensive discussion. Section 6 concludes the study and
offers perspectives for future research.

2. Methods
2.1. Problem Formulation

Let us denote the input video as X’ € RT-"H*Wx3 and the corre-
sponding audio signal converted to mel spectrogram as X € RT-9F,
where T_v and T_a represent the temporal dimensions for video and
audio respectively, H and W are the spatial dimensions of video frames,
3 represents the number of RGB channels and F is the mel-frequency
dimension. During training, we have access to both modalities with
corresponding feeding intensity labels y € {0,1,2,3} representing
None, Strong, Medium, and Weak feeding intensities respectively.
However, during inference, we aim to perform fish feeding intensity
recognition using only acoustic input X?.

The objective is to train an acoustic-only student model that can
achieve performance comparable to a vision-based teacher model.
Traditional cross-modal distillation directly transfers knowledge from
the teacher to the student model, often leading to feature entanglement
and suboptimal performance due to the significant modality gap be-
tween visual and acoustic representations.

2.2. Framework overview

To address the limitations of conventional cross-modal distillation,
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we propose AquaDistill, a decomposed knowledge distillation frame-
work that enhances audio-only systems through knowledge transfer
from video. As illustrated in Fig. 1, our approach consists of three key
components: (1) a decomposed distillation strategy that separates audio
features into complementary static acoustic and dynamic behavioral
branches, (2) the CMBF mechanism for effective cross-branch feature
integration, and (3) hybrid distillation losses that enable systematic
knowledge transfer while preserving modality-specific information and
preventing feature entanglement.

The overall architecture operates in two distinct phases: during
training, both log-mel spectrograms and video modalities are utilized to
learn decomposed representations through teacher-guided cross-modal
knowledge transfer, where the visual teacher network provides rich
spatiotemporal supervision to enhance the acoustic student branches;
during inference, only the acoustic input is required as the trained model
predicts feeding intensity based on the internalized cross-modal
knowledge. This asymmetric training-inference paradigm enables
practical deployment advantages of audio-only systems while
leveraging the rich supervisory signals from visual modalities during the
learning process, effectively bridging the performance gap between
acoustic and visual approaches.

2.3. Teacher network training

To provide rich supervisory signals for cross-modal knowledge
distillation, we employ a pre-trained S3D (Separable 3D CNN) (Xie et al.,
2018) model as our visual teacher network. S3D is a variant of 3D CNNs
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that factorizes standard 3D convolutions into separate spatial and tem-
poral convolutions, significantly reducing computational complexity
while maintaining strong performance in video understanding tasks.
This architecture effectively captures spatiotemporal patterns in video
data, making it particularly suitable for understanding dynamic fish
feeding behaviors. We selected S3D as our teacher model for several
compelling reasons: first, it demonstrates excellent performance in video
classification tasks while maintaining a relatively small parameter
footprint compared to other 3D CNN architectures; second, Cui et al.
(2024) and Cui et al. (2025) have demonstrated in two recent studies
that S3D achieves accuracy exceeding 90 % in fish feeding intensity
classification tasks, establishing its effectiveness in aquaculture video
analysis. We fine-tune a pretrained S3D model from Kinetics-400 on our
fish feeding video dataset with four intensity categories (as discussed in
Section 4.2.1). The fine-tuned visual teacher model then distills spatio-
temporal knowledge to the acoustic student network.

2.4. Decomposed cross-modal distillation

Given the audio features h? € R extracted by the MobileNetV2
(Kong et al., 2020) backbone from mel spectrograms, our decomposed
distillation strategy separates these features into two complementary
branches to avoid feature entanglement during cross-modal knowledge
transfer. The core idea is to explicitly separate the learning of stable
acoustic patterns from dynamic behavioral patterns, enabling more
effective cross-modal knowledge transfer. The representation h® is pro-
jected into two different feature spaces through separate projection
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Fig. 1. Overall workflow of the proposed AquabDistill framework. (a) During training, our model performs decomposed cross-modal distillation by explicitly
separating mel spectrogram inputs into static acoustic (green) and dynamic behavioral branches (orange), with each branch learning complementary representations
under visual teacher guidance through hybrid distillation losses, followed by CMBF for integrated prediction. (b) At inference, our model requires only mel spec-
trogram input and accurately predicts fish feeding intensity through the learned cross-modal knowledge embedded in the dual-branch architecture and

CMBF mechanism.



M. Cui et al.

networks, as shown in Equation (1) and Equation (2):

f = hyae(h?) € R (€]
fdynamic = ¢dynamic (ha) €R® ©))

where @gqic() and @gynamic(+) are implemented as identical two-layer
linear networks with ReLU activations followed by L2 normalization
for regularization. These projection layers serve as domain adaptation
components that transform the shared acoustic features into modality-
specific representations suitable for different learning objectives.

The static acoustic branch is designed to learn stable spectral pat-
terns and frequency characteristics that are inherent to acoustic feeding
signals, such as consistent frequency signatures of feeding sounds and
background aquaculture environment noise patterns. This branch
operates independently from the visual teacher to preserve audio-
specific information that might be lost during cross-modal transfer.
The static features % ¢ RP capture the intrinsic acoustic properties
that are consistent across different feeding intensities but vary in their
spectral characteristics.

The static features are processed through a linear classification layer
to produce predictions as follows:

f)mm = Lineards( 5‘““") 3

The static branch is trained using standard cross-entropy loss with
ground truth labels:

g/static = /CE (?taﬁcay) (4)

where y is the one-hot encoded ground truth label.

The dynamic behavioral branch learns temporal dynamics and mo-
tion patterns by distilling knowledge from the pre-trained visual teacher
model. Unlike the static branch, this branch focuses on capturing tem-
poral evolution and intensity variations in feeding behaviors that are
more readily observable in visual data. To address the significant mo-
dality gap between acoustic and visual representations, we employ
specialized normalization and similarity-based distillation losses. The
visual teacher features h” € RT*P are first temporally averaged to obtain
global representations and then L2 normalized to ensure consistent
feature scales, denoted as Zgzobar

To handle the distribution differences between modalities, we use
the cosine similarity loss instead of the L2 distance-based loss, which is
more robust to scale variations and modality gaps, as shown below:
< feaure = 1~ CosineSimilarity (£ 23,,,,) )
Where f&"mi is the L2 normalized dynamic features.

The dynamic features are processed through the same linear classi-
fication layer to produce predictions:

PV — Linearg, (f dy"amic) ©

Rather than using traditional knowledge distillation (KD) with soft
targets, we employ the teacher’s predictions as pseudo ground truth
labels, which provides more direct supervision for bridging the modality
gap as follows:

y-pseudo = arnga_x(/ﬁleacher) o
Lpred = ¢ cE (ﬁdymmicyyfpseudo) ®

where y_pseudo represents the hard pseudo label obtained by selecting
the class with highest probability from the teacher’s soft predictions

P/ op represents the cross-entropy loss using teacher’s hard pre-

dictions as pseudo ground truth supervision. We employ hard pseudo
labels rather than traditional soft knowledge distillation due to the
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significant modality gap between audio and visual features. Soft prob-
ability distributions are less reliable for cross-modal transfer, as teacher
confidence scores may not translate meaningfully across modality
boundaries. Hard pseudo labels provide more decisive supervision for
categorical boundary learning. Our comparison shows that soft distil-
lation (t = 4, KL divergence loss) achieves only 87.2 % mAP versus our
89.0 % mAP, while requiring 8 % longer training time and 5 % higher
memory usage. The computational overhead makes hard labels more
suitable for resource-constrained aquaculture applications.

The total loss for the dynamic branch combines both distillation
objectives, as follows:

7 7dynamic =Y pred +.7 feature (9)

The decomposed distillation strategy described above enables
effective knowledge transfer while maintaining feature separation.
However, to fully leverage these complementary representations, an
intelligent fusion mechanism is required that can adaptively combine
static acoustic and dynamic behavioral features based on their contex-
tual relevance. The following section introduces our cross-modal
behavioral fusion (CMBF) mechanism that addresses this challenge
through adaptive weighting and cross-branch information exchange.

2.5. Cross-modal behavioral fusion (CMBF)

After the decomposed cross-modal distillation process described in
Section 2.4, we obtain enhanced static features f*% and dynamic fea-
tures f9™@™¢ from the two separate branches. We then propose CMBF to
effectively combine these complementary representations and produce
the final feeding intensity prediction. This fusion mechanism is essential
because simple concatenation or averaging would ignore the varying
importance of static and dynamic information across different feeding
scenarios. Traditional fusion approaches either use simple concatena-
tion that ignores feature interactions or complex attention mechanisms
that suffer from computational overhead. CMBF leverages the cross-
modal knowledge learned through teacher distillation to achieve effec-
tive feature integration with linearly scaled computational complexity.

To preserve modality-specific characteristics while enabling effec-
tive fusion, we project the static and dynamic features into a shared
representation space through separate projection networks, as follows.:

pes ey (st (s () )

pamamic _ 1 qyerNorm (ReLU(Lineardynamic< y"“’"ic) ) ) a1

where independent projection layers maintain branch-specific infor-
mation while enabling subsequent fusion operations. We employ
LayerNorm and ReLU as standard choices for normalization and activa-
tion in CMBF, which are commonly used in efficient neural network
designs. Our comparative evaluation confirmed that LayerNorm and
ReLU provide optimal performance for our cross-modal fusion task while
maintaining computational efficiency suitable for agricultural edge
deployment.

Building upon the cross-modal knowledge learned through teacher
distillation, we apply frequency-domain weighting to emphasize
important spectral components in each branch. The formula is shown in
below:

w = g (Linear (P™**) ) (12)
wimamic _ o (L inear (PYmamic) ) (13)

where () denotes the sigmoid activation function. The learned weights
identify the most discriminative frequency components for each mo-
dality.

The enhanced features are then computed as follows:
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Fstaric = Psmtic ® vvstatic (1 4)

enhance

ez}rll;lrr::iecd _ denamin o) Wdynamic (15)
Where © denotes element-wise multiplication (Hadamard product),
enabling selective enhancement of individual feature dimensions based
on their learned importance weights. FS@i . represents frequency-
enhanced static acoustic features that emphasize important spectral
components through learned frequency weights, while Ffr’l'}'l‘;'l':;d repre-
sents behaviorally enhanced dynamic features that incorporate both
frequency-domain refinement and behavioral knowledge from the vi-
sual teacher network. This dual enhancement ensures that static features
capture refined acoustic patterns while dynamic features integrate cross-
modal behavioral understanding.

Rather than using fixed fusion weights, CMBF computes adaptive
weights based on feature similarity and interaction strength, The for-
mula is shown below:

[ = platic ® denamic c RT*P (16)
— " enhanced enhanced
i lynamic
S— Z (Fg?h%cnced © anhanced)
- ‘ } denamic

- a7)
Fenhanced|”

enhanced te

where S represents the normalized cosine similarity (range 0-1)
measuring the complementarity between static acoustic and dynamic
behavioral features. A higher similarity values (S > 0.6) indicate a
stronger feature complementarity, where both acoustic characteristics
contribute equally to feeding intensity recognition. A lower value (S <
0.3) suggests that one feature type is more discriminative, enabling the
model to adaptively emphasize static patterns (ambient sounds) or dy-
namic patterns (feeding activity sounds) based on the specific feeding
scenario.

Winodat = 6(MLP(mean(I) ) +S) (18)

where wp,qq represents the adaptive weight that balances static and
dynamic contributions based on their complementarity, and ¢ is a small
constant (e.g., 1e-8) added for numerical stability to prevent division by
zero. The adaptive weights in CMBF are computed through a learnable
MLP consisting of a single linear layer with trainable parameters, fol-
lowed by the sigmoid activation. The MLP parameters are initialized
using Xavier uniform initialization (Ennadir et al., 2024) and optimized
end-to-end with the entire framework using the Adam optimizer (Cui
et al., 2024), allowing the model to learn optimal fusion strategies
during training.

Finally, we enable mutual information exchange between branches
before adaptive fusion as follows:
Z(Fts;iﬁzcnced © Fd hance )

enhanced

score = ¢ (19)
vD

tatic __ ppstatic lynamic

stenhanced - anhanced +score © anhanced (20)
lynamic __ pdynamic tatic

P‘einhanced - anhanced +score © Finhanced (21)

d tati dynamic
Ffuse = Wiodal © Pzr:lhacnced + (l - Wmﬂdal) © Penhanned (22)

where /D is a scaling factor that normalizes the dot product to prevent
saturation of the sigmoid function, ensuring meaningful gradient flow
and providing discriminative attention scores across different samples.
High scores enable more cross-branch information sharing, while low
scores preserve branch-specific characteristics.

This allows each branch to benefit from the other’s knowledge while
maintaining computational efficiency with linear complexity order O(D)
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3. Dataset
3.1. Data acquisition and experimental system

Our dataset was collected in a controlled aquaculture facility using
Oplegnathus punctatus as the experimental subject. The fish were housed
in a recirculating tank (3 m in diameter, 0.75 m in depth) located in
Yantai, Shandong Province, China. The experimental population con-
sisted of 40-100 fish, each weighing approximately 150 g. To capture
multimodal data, we employed a high-definition digital camera (Hik-
vision DS-2CD2T87E(D)WD-L) with a frame rate of 25 fps (1920 x
1080) and a high-frequency hydrophone (LST-DHO01) with a sampling
frequency of 256 kHz. The camera was positioned on a tripod at
approximately 2 m height to capture overhead video footage, while the
hydrophone was submerged underwater to record acoustic data (as
shown in Fig. 2). The acquisition of video and audio data was syn-
chronized to ensure temporal alignment of multimodal information.
During data collection, we adhered to feeding protocols consistent with
real aquaculture production environments to ensure fish adaptation and
minimize appetite loss due to environmental changes. The water con-
ditions were maintained as follows: temperature at 26 + 1°C, dissolved
oxygen > 5 mg/L, pH at 7.2 + 0.5, nitrate < 0.5 mg/L, and ammonia
nitrogen < 0.8 mg/L. Fish were fed twice daily at 9 AM and 4 PM. The
feeding process typically lasted 3-15 min per session.

3.2. Data preprocessing and annotation

Under the guidance of aquaculture technicians, we annotated the
feeding behavior based on observed feeding intensity into four cate-
gories: “Strong”, “Medium”, “Weak”, and “None” (as shown in Fig. 3).
The feeding intensity categories were defined as follows: Strong - sig-
nificant water turbulence with high fish aggregation and rapid bait
consumption; Medium - moderate fish movement toward bait with
reduced aggregation; Weak - limited fish participation with slow feeding
behavior; None - no feeding response with dispersed fish distribution. To
create a fine-grained dataset suitable for cross-modal knowledge distil-
lation, we segmented each recording session into 2-second clips,
resulting in 19,021 synchronized audio-video segments. The dataset
was partitioned into training (80 %), validation (10 %), and testing (10
%) sets through random selection while maintaining class balance,
resulting in 13,421, 2,800, and 2,800 clips, respectively.

For acoustic data preprocessing, we converted raw audio signals into
log-mel spectrograms, which have proven effective for capturing time-
—frequency characteristics of fish feeding sounds. The log-mel spectro-
gram transformation was performed using the following parameters:
window size of 1024 samples, hop length of 512 samples, and 128 mel
filter banks. This representation provides a compact yet informative
encoding of acoustic features while maintaining robustness to environ-
mental noise commonly present in aquaculture settings. video data was
preprocessed by extracting frames at the original 25 fps and resized to
224 x 224 pixels for compatibility with standard deep learning archi-
tectures. Data augmentation techniques including horizontal flipping
and random noise addition were applied during training to enhance
model generalization. The final dataset distribution across feeding in-
tensity categories is presented in Table 1, showing a comprehensive
collection suitable for training robust cross-modal knowledge distilla-
tion models.

4. Experimental setup
4.1. Evaluation metrics

To comprehensively evaluate the performance of our proposed
AquaDistill framework and enable fair comparison with existing
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Fig. 2. Experimental systems for data collection.

methods, we employ standard classification metrics commonly used in
fish feeding intensity recognition literature: Accuracy, Precision, Recall,
and F1-Score and mean Average Precision (mAP). These metrics provide
complementary perspectives on model performance, with Accuracy
reflecting overall classification performance, Precision indicating pre-
diction reliability, Recall measuring detection completeness, and F1-
Score providing a balanced assessment particularly valuable for
handling class imbalance. The metrics are computed as follows:

TP + TN
AcCHray = g5 TN+ Fp + BN @3
TP
Precision = ——— 2
recision = = 7P 24)
TP
l=——- 2
Reca TP N (25)
2 x Precision x Recall
F1- = 2
Score Precision + Recall 26)
AP — 157 Ap 27
m - EZC:I ¢ ( )

where TP, TN, FP, and FN represent true positives, true negatives, false
positives, and false negatives, respectively. AP, represents the average
precision for class C, computed as the area under the precision-recall
curve for that class, and C is the total number of classes. For multi-
class classification, mAP provides a robust evaluation by considering
the model’s performance across all feeding intensity categories.

4.2. Model training configuration

4.2.1. Teacher model training

The visual teacher model (S3D) is initialized with pretrained weights
from Kinetics-400 and fine-tuned on our fish feeding dataset. We
selected S3D over the larger models such as TimeSformer (Kour et al.,
2025) and videoMAE (Li et al., 2025), as they are prone to overfitting on
our dataset (19,021 samples) and require excessive computational re-
sources (150 GFLOPs vs 23.4 GFLOPs) that are impractical for agricul-
tural applications. We use the complete training to maintain the same
data split as the student model training: 13,421 samples for training (80
% of total dataset), 2,800 samples for validation (10 % of total dataset),
and 2,800 samples reserved for final testing (10 % of total dataset). This
ensures consistent data distribution between teacher and student
training phases. During teacher model fine-tuning, we randomly sample

16 frames from each 2-second video clip in temporal order to maintain
the sequential nature of feeding behaviors while reducing computa-
tional complexity. The teacher model training employs the Adam opti-
mizer with a learning rate of 1e-3 and batch size of 32, fine-tuned for 20
epochs until convergence. The fine-tuned S3D teacher model achieves
92.8 % mAP on the validation set, demonstrating effective adaptation
from the general action recognition domain (Kinetics-400) to the spe-
cific aquaculture monitoring task.

To accelerate student model training and ensure reproducible re-
sults, we pre-extract and cache all teacher model outputs after fine-
tuning completion. Specifically, we extract teacher features and pre-
dictions for all 13,315 training samples and save them as tensors. This
approach eliminates the computational overhead of running the teacher
network during student training iterations, reducing overall training
time by approximately 40 % while maintaining identical supervision
quality for cross-modal knowledge distillation.

4.2.2. Student model training

All experiments were conducted on a high-performance computing
platform to ensure reproducible results and efficient training. The
experimental details can be seen in Table 2. We use an NVIDIA GeForce
RTX 4090 chip with 24 GB of RAM as the graphics card for core
computation, paired with an Intel Core i9-13900 K processor running at
3 GHz. The experimental environment utilizes CUDA 12.1 for GPU ac-
celeration, Python 3.9.16 for implementation, and PyTorch 2.0.1 as the
deep learning framework. The student model (AquaDistill) training
employs the Adam optimizer with an initial learning rate of 1e-3, trained
for 300 epochs with a batch size of 32. To prevent overfitting and ensure
model generalization, we implement early stopping with a patience of
15 epochs and apply dropout regularization with a rate of 0.5. The
training utilizes pre-cached teacher features and predictions to perform
cross-modal knowledge distillation, with the decomposed distillation
strategy separating acoustic features into static and dynamic branches.
All random processes are controlled using a fixed seed (25) to ensure
experimental reproducibility across different runs. Training requires
approximately 4 h in total: including the fine-tuning of teacher model
(20 epochs, ~1.5 h) and the training of the student model (300 epochs,
~2.5 h). We report mean performance across 3 independent runs with
different weight initializations, following standard practice in deep
learning research where multiple runs with different random seeds are
the most commonly accepted method for assessing model stability and
reporting variance. The results are presented as mean =+ standard de-
viation to indicate performance consistency across different
initializations.
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Fig. 3. Video frames and mel spectrogram visualizations of four different fish feeding intensity: “Strong”, “Medium”, “Weak” and “None”.
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Table 1
Dataset distribution for fish feeding intensity classification.
Feeding Intensity Training Validation Testing Total
Strong 4053 869 869 5791
Medium 3801 815 815 5431
Weak 3356 719 719 4794
None 2104 603 603 3111
Total 13,421 2800 2800 19,021
Table 2
Experimental configuration and parameter settings.
Configuration Model/Version
CPU Intel Core i9-13900 K @ 3 GHz
GPU NVIDIA GeForce RTX 4090 (24 GB)
Programming Language Python 3.9.16
CUDA Version 121
Deep Learning Framework PyTorch 2.0.1
Optimizer Adam
Batch Size 128
Learning Rate le-3
Max Epochs 300
Early Stopping Patience 15
Dropout Rate 0.5
Random Seed 25

5. Results and discussion
5.1. Overadll performance comparison

We comprehensively evaluate our AquaDistill framework against
state-of-the-art methods across different modality paradigms. Our
comparison includes vision-based approaches including, S3D (Xie et al.,
2018), I3D (Yang et al., 2025), 3D-ResNet18 (Al-Khater and Al-Madeed,
2024) and 3D-ViT (Zhang et al.,, 2024), multimodal audio-visual
methods including, U-FFIA (Cui et al., 2024), MFFFI (Du et al., 2023),
and MMFINet (Gu et al., 2025), and audio-only baselines including,
GhostNet (Du et al., 2023), Swin Transformer (Zeng et al., 2023),
MobileNetV3 (Du et al., 2023), and MobileNetV2 (Kong et al., 2020).
Table 3 presents detailed performance comparisons on our fish feeding
intensity recognition dataset, demonstrating the effectiveness of our
cross-modal knowledge distillation strategy.

Our AquabDistill achieves substantial improvements over existing
audio-only approaches, establishing a new state-of-the-art for acoustic-
based fish feeding intensity recognition. Compared to the best previ-
ous audio method MobileNetV2 (82.6 % mAP), our approach delivers a
significant 6.4 % improvement (89.0 % mAP), representing a relatively
7.8 % improvement. This demonstrates the effectiveness of cross-modal
knowledge transfer in enhancing acoustic feature discrimination capa-
bilities. Notably, advanced architecture designed for other domains
shows limitations when applied to acoustic data. The Swin Transformer,
despite its remarkable success in visual tasks, achieves only 79.5 % mAP

Table 3
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on our acoustic dataset. This suboptimal performance confirms that
vision-specific inductive biases, particularly the patch-based attention
mechanism optimized for spatial relationships, do not effectively
transfer to the time—frequency representation of audio. In contrast, our
domain-adapted approach through decomposed distillation successfully
captures the temporal-spectral patterns essential for feeding behavior
recognition. The complexity analysis shows AquaDistill’s advantage in
computational efficiency, offering a potential advantage for edge
deployment. With only 1.7 GFLOPs, our method requires significantly
fewer computations than visual (23.4-78.3 GFLOPs) and multimodal
approaches (32.1-67.2 GFLOPs) while outperforming audio baselines.
This efficiency makes AquaDistill suitable for resource-constrained
aquaculture devices such as embedded controllers and low-cost
terminals.

A critical contribution of our work is significantly narrowing the
performance disparity between audio and visual modalities. The orig-
inal gap between the best audio method (MobileNetV2: 82.6 %) and the
visual teacher (S3D: 92.8 %) spans 10.2 %. Our AquaDistill reduces this
gap to merely 3.8 % (89.0 % vs 92.8 %), representing a 63 % reduction
in performance disparity. Fig. 4 provides detailed confusion matrix
analysis revealing the classification improvements achieved by our
AquabDistill framework. The original audio baseline (Fig. 4a) exhibits
substantial confusion between adjacent feeding intensity levels, partic-
ularly struggling with medium-weak (classes 2-3) discrimination where
108 samples are misclassified between these categories in both di-
rections. This bi-directional confusion indicates the inherent difficulty in
distinguishing subtle intensity variations using acoustic features alone,
especially between moderate feeding states. Our enhanced audio
approach (Fig. 4b) demonstrates remarkable improvement in classifi-
cation precision across all categories. The confusion between medium-
weak feeding has been reduces significantly (75 vs 108 for medium-
weak, 86 vs 98 for weak-medium), while strong feeding recognition
improves dramatically with better separation from other categories.
Most notably, the none-feeding category (class 0) achieves near-perfect
recognition with only 20 total misclassifications versus 58 in the original
model, indicating that our cross-modal distillation particularly enhances
the detection of feeding absence. Compared with the visual teacher
model (Fig. 4c), our enhanced audio approach achieves competitive
confusion patterns despite using only acoustic input. The visual model
maintains advantages in overall precision, particularly in distinguishing
medium and weak categories, but our enhanced audio method suc-
cessfully captures the key discriminative patterns for extreme categories
(none and strong feeding).

While multimodal audio-visual methods achieve the highest absolute
performance (U-FFIA: 95.1 % mAP, MMFINet: 94.6 % mAP), they
require substantial computational overhead and dual-stream processing.
Our audio-only AquaDistill approach (89.0 % mAP) delivers remarkable
performance considering its single-modality constraint, achieving only
6 %-7% lower accuracy than the best multimodal methods while
requiring significantly fewer resources. Multimodal methods
(93.9-95.1 % mAP) outperform single visual modality (85.1-92.8 %

Performance comparison with existing methods on fish feeding intensity recognition dataset.

Method Input Modality mAP (%) Acc (%) F1 (%) Params (M) Model Size (MB) FLOPs (G) Inference (ms)
S3D Visual 92.8 + 0.2 92.3 + 0.3 92.5 + 0.2 7.9 31.7 23.4 6.4
13D Visual 88.2+ 0.4 87.5+0.3 87.8+£0.3 12.5 50.0 42.1 15.3
3D-RestNet18 Visual 85.1 £0.3 84.6 + 0.4 84.8 £0.3 335 134.2 78.3 22.8
3D-ViT Visual 86.4 £ 0.3 85.9 + 0.2 86.1 £0.3 27.8 111.2 65.7 18.7
U-FFIA Audio + Visual 95.1 + 0.2 94.5 + 0.2 95.0 + 0.2 21.6 86.4 67.2 28.8
MFFFI Audio + Visual 93.9+0.3 93.5+0.2 93.7 £ 0.3 10.6 42.4 34.8 24.2
MMFINet Audio + Visual 94.6 £ 0.2 94.1 £ 0.3 94.4 £ 0.2 10.01 40.0 32.1 23.6
GhostNet Audio 81.4+0.5 80.1 + 0.4 81.7 £ 0.3 5.2 20.8 2.3 28.0
Swin Transformer Audio 79.5 + 0.6 76.8 £ 0.5 77.2 + 0.4 28 112.0 8.7 26.5
MobileNetV3 Audio 80.2 +£ 0.4 79.1 £ 0.3 78.7 £ 0.5 3.7 14.8 1.8 2.3
MobileNetV2 Audio 82.6 + 0.4 80.5+ 0.3 80.7 £ 0.3 3.5 14.0 1.6 1.2
AquaDistill (Ours) Audio 89.0 + 0.3 87.0 + 0.2 87.2 + 0.2 5.9 23.6 1.7 1.4
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Fig. 4. Confusion matrices comparison for fish feeding intensity classification. (a) Original audio baseline using MobileNetV2 showing significant confusion between
adjacent intensity levels, particularly between classes 2-3 (medium-weak) with 108 misclassifications each direction. (b) Enhanced audio performance using our
AquaDistill framework demonstrating substantial reduction in inter-class confusion and improved diagonal dominance. (c) Video classification results from S3D
teacher model showing superior class separation capabilities. Classes represent: 0-None, 1-Strong, 2-Medium, 3-Weak feeding intensities.

mAP), which in turn exceeds audio-only approaches (79.5-89.0 %
mAP). However, the modest gains of multimodal methods (+2.3-2.8 %
over best visual methods) come at substantial computational cost,
requiring 17-20 x longer inference time compared to our audio-only
solution. This demonstrates that while multimodal fusion provides in-
cremental benefits, our cross-modal distillation approach offers a
compelling trade-off between performance and practical deployment
constraints.

5.2. Ablation study

To validate the effectiveness of our proposed AquaDistill framework,
we conduct comprehensive ablation studies examining both the

contribution of core components and the superiority of our fusion
mechanism. All experiments are performed under identical conditions
using our fish feeding intensity dataset.

5.2.1. Core component analysis

Table 4 presents the incremental contribution of each major
component in our framework. To validate the necessity of our dual-
branch design, we first examine single-branch performance. The static
branch only (identical to baseline at 82.6 % mAP) represents training
without any cross-modal distillation, preserving only inherent acoustic
patterns. The dynamic branch only achieves 84.3 % mAP through cross-
modal distillation from visual teacher, demonstrating the value of
behavioral knowledge transfer from the visual modality. However, the
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Table 4
Core component ablation study.
Components mAP Acc (%) F1 (%) Params
(%) o)
Baseline (MobileNetV2) 82.6 + 80.5 + 80.7 + 3.5
0.4 0.3 0.3
+ Static Branch Only (No 82.6 + 80.5 + 80.7 + 3.5
Distillation) 0.4 0.3 0.3
+ Dynamic Branch Only (Video 84.3 + 82.4 + 82.6 + 4.0
Distillation) 0.3 0.2 0.3
+ Decomposed Distillation (Both ~ 85.2 + 83.1 + 83.4 + 5.1
Branches) 0.3 0.2 0.2
+ CMBF Fusion 87.8 + 85.7 + 86.1 + 5.9
0.2 0.2 0.2
+ Full Framework 89.0 + 87.0 + 87.2 + 5.9
0.3 0.2 0.2

combined decomposed cross-modal distillation (85.2 % mAP) provides
the most substantial gain (+2.6 % over baseline), outperforming either
single branch. This significant improvement demonstrates that sepa-
rating static acoustic and dynamic behavioral learning prevents feature
entanglement that commonly occurs in conventional distillation ap-
proaches. By allowing the static branch to preserve audio-specific
spectral characteristics while the dynamic branch focuses on motion
patterns learned from visual teacher, our decomposed strategy maxi-
mizes knowledge transfer effectiveness while avoiding representational
conflicts.

Unlike direct distillation methods that force audio features to
simultaneously learn both acoustic properties and visual motion pat-
terns, leading to conflicting learning objectives and suboptimal feature
representations, our proposed decomposition-based strategy maintains
separate learning pathways to avoid representational conflicts. As
illustrated in Fig. 5, conventional single-branch distillation results in
overlapping, poorly-separated clusters due to feature entanglement,
while our dual-branch approach produces well-defined class boundaries
with clear cluster separation. By allowing the static branch to preserve
audio-specific spectral characteristics while the dynamic branch focuses
on motion patterns learned from visual teacher, our proposed strategy
enables effective knowledge transfer across the modalities. The addition
of CMBF fusion contributes an additional 2.6 % (85.2 % — 87.8 %),
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indicating that simple feature combination is insufficient for optimal
performance. The CMBF mechanism’s adaptive weighting based on
feature similarity and interaction enables sample-specific fusion strate-
gies, allowing the model to emphasize static features for ambient-
dominated samples while prioritizing dynamic features for movement-
intensive feeding behaviors. The final framework optimization (41.2
%) incorporates adaptive learning rate scheduling, label smoothing (o =
0.1), and optimized loss weighting, demonstrating that systematic
optimization of the complete pipeline yields additional gains beyond the
contributions by the individual component.

5.2.2. Fusion method comparison

Table 5 reveals critical insights into multimodal feature fusion
effectiveness. Simple concatenation (85.2 % mAP) and element-wise
addition (85.5 % mAP) show limited improvement because they treat
all features equally without considering their contextual importance.
These naive approaches cannot adapt to the varying relevance of static
vs. dynamic information across different feeding scenarios. Self-
attention (86.1 % mAP) and cross-attention (86.4 % mAP) demon-
strate improved performance by learning feature relationships but suffer
from two critical limitations: quadratic computational complexity O
(T?D) that significantly increases inference time (1.9-2.1 ms vs 1.4 ms),

Table 5
Fusion method comparison.
Fusion Method mAP Acc F1 Params Inference Complexity
(%) (%) (%) oD (ms)
Concatenation 85.2 83.1 83.4 6.1 1.5 o D)
+0.3 +02 +£0.2
Element-wise 85.5 83.4 83.7 5.9 1.4 o D)
Addition + 0.4 +0.3 +0.2
Self-attention 86.1 84.2 84.5 6.5 1.9 0 (T°D)
+ 0.2 +0.2 + 0.2
Cross- 86.4 84.5 84.8 6.8 2.1 (6] (TZD)
attention +0.3 +0.2 +0.3
CMBF(Ours) 87.8 85.7 86.1 5.9 1.4 o (D)

+ 0.2 + 0.2 + 0.3

Note: T: Temporal dimension, representing the number of time frames in the
processed feature; D: Feature dimension, representing the dimensionality of
features used in fusion operations.
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Fig. 5. T-sne visualization demonstrating feature entanglement and disentanglement. (a) conventional single-branch distillation exhibits feature entanglement with
overlapping, poorly-separated clusters due to conflicting learning objectives. (b) our aquadistill approach achieves clear feature disentanglement with well-defined
class boundaries, validating the effectiveness of decomposed cross-modal learning in preventing representational conflicts between static acoustic and dynamic

behavioral features.
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and temporal over-smoothing that diminishes the fine-grained temporal
boundaries essential for accurate feeding intensity classification. The
attention mechanisms aggregate information across temporal di-
mensions, potentially blurring the sharp transitions between different
feeding states. We also evaluate alternative attention mechanisms
adapted for our dual-branch fusion, including squeeze-and-excitation
(SE) modules and convolutional block attention module (CBAM).
When applied to our concatenated features, SE modules achieve only
84.1 % mAP, struggling with cross-branch interaction modeling due to
their channel-wise focus. CBAM applied to fused features demonstrates
84.8 % mAP but introduces significant computational overhead (2.4 ms
inference time vs 1.4 ms for CMBF) and fails to preserve the temporal
locality crucial for feeding behavior recognition. These results highlight
the importance of our specialized CMBF design for cross-branch adap-
tive weighting in acoustic behavioral analysis.

Our CMBF achieves the best performance (87.8 % mAP) while
maintaining excellent efficiency (1.4 ms, 5.9 M parameters) due to its
intelligent design that addresses the fundamental limitations of con-
ventional fusion approaches. The adaptive sample-specific weighting
mechanism enables CMBF to dynamically adjust the contribution bal-
ance between static and dynamic features based on the content char-
acteristics of each audio sample. This contextual adaptation is
particularly crucial for feeding intensity recognition, where optimal
performance requires balancing static acoustic patterns and dynamic
behavioral features. The CMBF’s adaptive weighting mechanism based
on feature similarity and interaction strength enables sample-specific
fusion strategies, automatically adjusting the relative contributions of
static and dynamic branches, according to the underlying acoustic
characteristics of each input. Furthermore, CMBF’s temporal locality
preservation design maintains the discriminative temporal patterns
essential for distinguishing between feeding intensity levels, avoiding
the over-smoothing effects that plague traditional attention mecha-
nisms. This preservation of fine-grained temporal boundaries is critical
for detecting rapid transitions in feeding behavior, which often occur
over short time scales but carry significant information about feeding
intensity changes. The linear computational complexity O(D) ensures
that these sophisticated fusion capabilities come without substantial
computational overhead, making CMBF both effective and practical for
real-time aquaculture monitoring applications.
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5.3. Qualitative analysis

To gain deeper insight into the effectiveness of our decomposed
cross-modal distillation, we conduct comprehensive qualitative analysis
through feature visualization and training dynamics examination.

Fig. 6 demonstrates the progressive alignment between audio dy-
namic features and visual teacher representations throughout the
training process. The cosine similarity curve reveals three distinct pha-
ses of knowledge transfer: an initial rapid alignment phase (epochs
0-50) where similarity increases from 0.55 to 0.68, indicating effective
initial knowledge absorption; a gradual refinement phase (epochs
50-200) with steady improvement to 0.77, suggesting continuous
feature space adaptation; and a convergence phase (epochs 200-300)
where similarity stabilizes at the maximum value of 0.7693. This
training trajectory demonstrates that our decomposed distillation
strategy successfully guides the audio dynamic branch to learn visual
behavioral patterns without forcing premature convergence, allowing
for natural feature space evolution.

Fig. 7 demonstrates the progressive improvement of cross-modal
alignment throughout training across three critical epochs. The t-SNE
visualizations in Fig. 7(a) reveal the evolution of audio-visual feature
alignment from epoch 40 to 280. At epoch 40, the overlap between
audio dynamic features (red points) and visual teacher features (blue
points) is limited, with distinct separation indicating initial learning
stages. By epoch 150, substantial convergence begins to emerge,
showing increased co-location of the two modalities. At epoch 280, the
features achieve remarkable alignment with extensive overlap, con-
firming successful knowledge transfer from the visual teacher to the
audio dynamic branch. Fig. 7(b) provides complementary evidence by
visualizing feature distributions colored by class labels across the same
temporal progression. The consistent class separability maintained
throughout training demonstrates that the cross-modal alignment does
not compromise discriminative capability. Each feeding intensity cat-
egory—None (Class 0, green), Strong (Class 1, red), Medium (Class 2,
orange), and Weak (Class 3, blue)—forms distinct, well-separated clus-
ters that become increasingly coherent as training progresses. This
preservation of class boundaries while achieving cross-modal alignment
validates our decomposed distillation approach. The cosine similarity
distributions in Fig. 7(c) provide quantitative validation of the align-
ment progression. The mean similarity improves substantially from

Audio-Visual Feature Alignment Similarity Over Training
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(Max Similarity: 0.770 (Epoch280)]

0.8 1

Cosine Similarity
o
o

o
S
1

0.2

0.0 T T

100

150 200 250 300

Epoch

Fig. 6. Cross-modal feature alignment dynamics during training. The cosine similarity between audio dynamic features and visual teacher features progressively
increases from 0.55 to 0.770 over 300 epochs, demonstrating effective knowledge transfer through our decomposed distillation approach. The red dashed line

indicates the final maximum similarity achieved.
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Audio vs Visual Features (Epoch 40)

Feature Distribution by Class (Epoch 40)
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Fig. 7. Progressive cross-modal alignment analysis across training epochs. (a) t-SNE visualization showing the evolution of audio-visual feature alignment from
epoch 40 to 280. Red points represent dynamic audio features and blue points represent visual teacher features. The increasing overlap demonstrates progressive
knowledge transfer, with substantial alignment achieved by epoch 280. (b) Feature distribution by class labels (None: green, Strong: red, Medium: orange, Weak:
blue) across the same epoch, showing maintained class separability throughout the alignment process. (c) Cosine similarity distributions between audio and visual
features, with mean similarity improving from 0.696 (epoch 40) to 0.770 (epoch 280), indicating robust and consistent cross-modal knowledge transfer.

0.696 at epoch 40 to 0.744 at epoch 150, and finally reaches 0.770 at
epoch 280, marked as “Good Alignment.” The similarity histograms
show a clear shift toward higher values over time, with the distribution
becoming increasingly concentrated around 0.7-0.8 by epoch 280. This
progression demonstrates consistent and robust knowledge transfer
most samples rather than selective alignment for easy cases.

These results collectively validate the effectiveness of our decom-
posed cross-modal distillation approach. First, the progressive similarity
improvement curve confirms that decomposed distillation enables
controlled knowledge transfer without catastrophic forgetting of audio-
specific information. Second, the maintained class separability while
achieving high cross-modal similarity indicates that our method suc-
cessfully transfers behavioral understanding without compromising
discriminative capability. Finally, the consistent alignment across
diverse samples demonstrates the generalizability of our cross-modal
knowledge transfer mechanism, supporting its practical applicability
for real-world aquaculture monitoring scenarios.
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5.4. Backbone generalizability analysis

A key strength of our AquaDistill framework lies in its architecture-
agnostic design, consistently delivering performance improvements
regardless of the underlying backbone network. To demonstrate the
generalizability and robustness of our AquaDistill framework, we
conduct comprehensive experiments across various lightweight back-
bone architectures commonly used in resource-constrained applications.
We evaluate our framework using five representative lightweight ar-
chitectures: MobileNetV2 (baseline), MobileNetV3, MobileViT,
EfficientNet-B0O, and ShuffleNetV2. All backbones are adapted for audio
spectrogram processing with identical input resolution (1 x 126 x 128)
and training configurations to ensure fair comparison. Each backbone
undergoes the same decomposed distillation process with our S3D visual
teacher, maintaining consistent distillation loss weights and CMBF
fusion mechanisms across all experiments.

Table 6 presents comprehensive results demonstrating that Aqua-
Distill consistently improves performance across all tested backbones.
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Table 6
Backbone generalizability analysis results.
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Backbone Params (M) Model Size (MB) Baseline mAP (%) AquaDistill mAP (%) Improvement Acc (%/M) Inference (ms)
MobileNetV2 5.9 23.6 82.6 89.0 +6.4 15.1 1.4
MobileNetV3 6.2 24.8 80.2 85.4 +5.2 13.8 1.5
MobileViT 8.7 34.8 79.8 84.6 +4.8 9.7 1.8
EfficientNetBO 5.3 21.2 81.1 86.2 +5.1 16.3 1.6
ShuffleNetV2 4.1 16.4 78.9 84.3 +5.4 20.6 1.2

The improvements range from 4.8 % (MobileViT) to 6.4 % (Mobile-
NetV2) in mAP, with an average improvement of 5.6 %. Notably, our
framework achieves the best absolute performance with MobileNetV2
(89.0 % mAP), which also maintains the optimal parameter-efficiency
ratio (15.1 Acc%/M). This superior performance stems from
MobileNetV2's depth wise separable convolutions that naturally align
with the spectral decomposition patterns in audio data, making it
particularly receptive to our distillation-guided feature enhancement.
MobileNetV3 shows substantial improvement (+5.2 % mAP) but with
slightly higher computational overhead due to its squeeze-and-
excitation modules. EfficientNet-BO demonstrates good performance
gains (+5.1 % mAP) while maintaining balanced parameter count (5.3
M), though its compound scaling design introduces unnecessary
complexity for our audio processing task. MobileViT, despite being a
vision transformer variant, shows the smallest improvement (+4.8 %
mAP), confirming our earlier observation that transformer architectures
designed for spatial relationships struggle with audio spectrograms’
time-frequency characteristics. ShuffleNetV2 achieves notable
improvement (+5.4 % mAP) with the smallest parameter footprint (4.1
M), making it attractive for ultra-lightweight deployments despite
slightly lower absolute performance. The efficiency analysis reveals
crucial insights for practical deployment decisions. While MobileNetV2
achieves the best accuracy-to-parameter ratio (15.1 Acc%/M), Shuf-
fleNetV2 provides the best accuracy-to-size ratio for memory-
constrained environments. MobileViT, despite its transformer heritage,
requires significantly more parameters (8.7 M) for modest performance
gains, highlighting the mismatch between vision transformers and audio
processing requirements. These findings suggest that depthwise sepa-
rable convolution architectures (MobileNetV2/V3, ShuffleNet) are
naturally better suited for our cross-modal distillation approach.
Across all architectures, we observe consistent improvement pat-
terns: decomposed distillation contributes the largest gains (2.4-2.8 %),
CMBF fusion adds significant value (2.1-2.6 %), and framework opti-
mization provides additional refinements (0.8-1.2 %). This consistency

(a) Video frames

validates that our technical innovations address fundamental challenges
in audio-based feeding recognition rather than exploiting architecture-
specific characteristics. All tested backbones maintain real-time pro-
cessing capabilities with inference times ranging from 1.2 ms (Shuf-
fleNetV2) to 1.8 ms (MobileViT). The minimal speed differences
demonstrate that our framework’s computational overhead is negligible
compared to backbone computation, ensuring that architecture selec-
tion can prioritize accuracy-parameter trade-offs without sacrificing
real-time performance requirements for aquaculture monitoring
applications.

5.5. Real-world environment validation

To demonstrate the real-world applicability of our method, we
conducted experiments with a commercial aquaculture facility at the
Guangzhou Aquatic Products Promotion Station, China (as shown in
Fig. 8). We collected 8,900 audio-visual samples of Lotus Carp fish, a
common aquaculture species, from a tank (4 m x 2 m x 3 m). This real-
world environment presented challenges such as environmental noise,
water surface reflection, and foams, which are not present in controlled
settings. The dataset maintained the same specifications as our
controlled dataset, with 2-second audio-visual clips annotated by
experienced technicians. We randomly split the real-world dataset into
training (70 %), validation (10 %), and testing (20 %) sets, resulting in
6,230, 890, and 1,780 samples, respectively.

Due to the turbid water conditions typical of commercial aquaculture
facilities, visual classification performance was significantly impacted,
achieving only 84 % accuracy compared to 92.3 % in controlled settings.
The challenging visual conditions resulted from multiple factors: water
turbidity reduced fish visibility, surface reflections created visual arti-
facts, and foam formation periodically obscured the monitoring area.
The audio-only baseline similarly decreased to 79.3 % accuracy due to
increased environmental noise and acoustic interference, representing a
smaller performance degradation than the visual modality. We fine-
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(b) Audio mel-spectrogram

Fig. 8. Real-world aquaculture facility experimental setup and data characteristics. (a) A Commercial aquaculture tank at Guangzhou Aquatic Products Promotion
Station showing turbid water conditions, surface foam, and Lotus Carp fish in a 4 m x 2 m x 3 m tank. (b) The corresponding mel-spectrogram of Lotus Carp feeding
audio showing complex acoustic environment with background noise, water circulation sounds, and environmental interference patterns across the frequency

spectrum from 0-16384 Hz over a 2-second duration.
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tuned our pre-trained AquabDistill model on 6,230 Lotus Carp training
samples using a two-stage approach to preserve the learned cross-modal
alignment. Initial frozen-backbone training (20 epochs, Ir = 5e-4) adapts
the fusion module without disrupting audio-visual knowledge, followed
by end-to-end refinement (30 epochs, Ir = 1e-4) with early stopping to
prevent overfitting on the smaller dataset. This fine-tuned AquaDistill
achieved 83.6 % accuracy, demonstrating a 4.3 % improvement over the
audio baseline and effectively narrowing the audio-visual gap to merely
0.4 % in this challenging real-world scenario.

The substantial improvement (79.3 % to 83.6 %) in real-world
conditions validates several key aspects of our approach. First, our
framework demonstrates excellent transferability across different spe-
cies and environments, with the pre-trained knowledge successfully
adapting to Lotus Carp from the original Oplegnathus punctatus dataset.
Second, the reduced modality gap (0.4 % vs 5.3 % in controlled settings)
indicates that acoustic signals maintain more consistent quality across
environmental conditions, supporting our hypothesis that audio-based
systems offer superior deployment reliability. Finally, the 5.4 % rela-
tive improvement in challenging conditions exceeds the controlled
environment gains, suggesting that our method provides greater value in
practical deployment scenarios where environmental factors limit visual
system effectiveness.

6. Conclusion

In this paper, we have introduced AquaDistill, a novel cross-modal
knowledge distillation framework designed to enhance audio-only fish
feeding intensity recognition by transferring visual knowledge during
training while requiring only acoustic input during inference. Our
approach incorporates a decomposed distillation strategy that separates
audio features into static acoustic and dynamic behavioral branches,
CMBEF for intelligent feature integration, and hybrid distillation losses
enabling effective knowledge transfer while avoiding feature entangle-
ment. Our framework achieves 89 % mAP and 87 % accuracy, repre-
senting improvements of 7 % and 5 % respectively over baseline
approaches while maintaining exceptional computational efficiency
with only 5.9 M parameters and 1.2 ms inference time. The method
successfully reduces the audio-visual performance gap by 63 %,
demonstrating robust generalizability across various lightweight back-
bones and superior performance in challenging commercial aquaculture
conditions. Our results show the potential for deploying high-accuracy
feeding intensity recognition systems in challenging underwater envi-
ronments where visual systems may fail due to water turbidity or
lighting conditions, indicating that AquaDistill may be valuable for
resource-constrained edge deployments in commercial aquaculture
monitoring applications. The successful cross-species adaptation from
Oplegnathus punctatus to Lotus Carp further confirms the framework’s
practical applicability across diverse aquaculture species and environ-
ments. The cross-modal feature alignment visualization provides
compelling evidence of successful knowledge transfer, validating the
effectiveness of our decomposed distillation approach for optimizing
feeding management in aquaculture settings. Our study has several
limitations. First, validation is limited to two fish species (Oplegnathus
punctatus and Lotus Carp), constraining generalizability claims across
diverse aquaculture species. Second, the performance gap between
controlled (89.0 % mAP) and real-world environments (83.6 % mAP)
suggests scalability challenges in highly variable commercial settings
with different water conditions and environmental factors. To address
these limitations, future work could explore extending applicability to
diverse aquaculture species and integrating additional modalities such
as environmental sensors. Furthermore, investigating the application of
our cross-modal distillation approach to other aquaculture monitoring
tasks such as fish health assessment could establish a comprehensive
framework for intelligent aquaculture management systems.
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